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Unipolar Induction in the Concept of the Scalar-
Vector Potential

   

Abstract- The unipolar induction was discovered still  Faraday 
almost 200 years ago, but in the classical electrodynamics of 
final answer to that as and why work some constructions of 
unipolar generators, there is no up to now. Let us show that 
the concrete answers to all these questions can be obtained 
within the framework the concept of scalar-vector potential. 
This concept, obtained from the symmetrical laws of induction, 
assumes the dependence of the scalar potential of charge and 
pour on it from the charge rate. The symmetrization of the 
equations of induction is achieved by the way of their record 
with the use by substantial derivative. Different the schematics 
of unipolar generators are given and is examined their 
operating principle within the framework of the concept of 
scalar- vector potential.  

      
     

 

I. Introduction 

he unipolar induction was discovered still By 
faradeem almost 200 years ago [1], but in the 
classical electrodynamics of final answer to that as 

and why work some constructions of unipolar 
generators, there is no up to now. Is separately 
incomprehensible the case, when there is a revolving 
magnetized conducting cylinder, during motion of which 
between the fixed contacts, connected to its axis and 
generatrix, appears emf. Is still more incomprehensible 
the case, when together with the cylindrical magnet 
revolves the conducting disk, which does not have 
galvanic contact with the magnet, but fixed contacts are 
connected to the axis of disk and its generatrix. In some 
sources it is indicated that the answer can be obtained 
within the framework special relativity (SR), but there are 
no concrete references, as precisely SR explain the 
cases indicated. Let us show that the concrete answers 
to all these questions can be obtained within the 
framework the concept of scalar- vector potential. This 
concept, obtained from the symmetrical laws of 
induction, assumes the dependence of the scalar 
potential of charge and pour on it from the charge rate.  

II. Concept of Scalar-Vector Potential 

The Maxwell equations do not give the 
possibility to write down fields in the moving coordinate 
systems,  if fields in the fixed system are known [2].  This 
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however, these conversions from the classical 
electrodynamics they do not follow. Question does arise, 
is it possible with the aid of the classical 
electrodynamics to obtain conversions fields on upon 
transfer of one inertial system to another, and if yes, 
then, as must appear the equations of such 
conversions.  Indications of this are located already in 
the law of the Faraday induction.  Let us write down 
Faraday: 

BdE d l
d t
Φ′ ′ = −∫


 .                                                 (2.1) 

As is evident in contrast to Maxwell equations in 
it not particular and substantive (complete) time 
derivative is used. 

The substantional derivative in relationship (2.1) 
indicates the independence of the eventual result of 
appearance emf in the outline from the method of 
changing the flow, i.e. flow can change both due to the 
local time derivative of the induction of and because the 
system, in which is measured , it moves in the three-
dimensional changing field . The value of magnetic flux 
in relationship (2.1) is determined from the relationship  

B B d S′Φ = ∫


,                                                       (2.2) 

where the magnetic induction B Hµ=
  

is determined 

in the fixed coordinate system, and the element d S′
  

is 

determined in the moving system. Taking into account 
(2.2), we obtain from (2.1)

 

d
E d l B d S

d t
′ ′ ′= −∫ ∫
  

 , 
             

                                                                               

(2.3)
  

and further, since 
d v grad
d t t

∂
∂

= +


, let us write 

down [3-6] 

BE d l d S B v d l v d iv B d S
t

∂
∂

 ′ ′ ′ ′= − − × − ∫ ∫ ∫ ∫


     


.                                                                     

(2.4) 

T 
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problem is solved with the aid of the Lorenz conversions, 

F. F. Mende α & A. S. Dubrovin σ



In this case contour integral is taken on the 

outline d l′


, which covers the area d S′


. Let us 

immediately note that entire following presentation will 
be conducted under the assumption the validity of the  

Galileo conversions, i.e., d l d l′ =
 

 and SdSd


=′ . 

From relationship (2.6) follows 

E E v B ′ = + × 
  

.                                                 (2.5) 

If both parts of equation (2.6) are multiplied by 
the charge, then we will obtain relationship for the 
Lorentz force  

LF e E e v B ′ = + × 
  

.
                                            

(2.6) 

Thus, Lorentz force is the direct consequence of 
the law of magnetoelectric induction. 

For explaining physical nature of the 
appearance of last term in relationship (2.5) let us write 

down B


 and E


 through the magnetic vector potential 

BA


: 

, B
B

AB rot A E
t

∂
∂

= = −


 
.        

                                         (2.7)

 
Then relationship (2.5) can be rewritten 

B
B

AE v rot A
t

∂
∂

 ′ = − + × 


 

    
                                   

(2.8)

 
and further 

( ) ( )B
B B

AE v A grad v A
t

∂
∂

′ = − − ∇ +


   

      
                                                                                                                (2.9)

 
The first two members of the right side of 

equality (2.9) can be gathered into the total derivative of 
vector potential on the time, namely:  

( )B
B

d AE grad v A
d t

′ = − +


 
.      

                                     
(2.10)

 

From relationship (2.9) it is evident that the field 
strength, and consequently also the force, which acts on 
the charge, consists of three parts. 

 First term is obliged by local time derivative. 
The sense of second term of the right side of 
relationship (2.9) is also intelligible. It is connected with a 
change in the vector potential, but already because 
charge moves in the three-dimensional changing field of 
this potential.  Other nature of last term of the right side 
of relationship (2.9). It is connected with the presence of 

potential forces, since. potential energy of the charge, 
which moves in the potential field BA


 with the speed v , 

is equal ( )e v AB


. The value ( )Be grad V A


gives 

force, exactly as gives force the gradient of scalar 
potential. 

 Taking rotor from both parts of equality (2.10) 

and taking into account that 0rot grad ≡ , we obtain 

d Brot E
d t

′ = −



 .                                             (2.11) 

If there is no motion, then relationship (2.11) is 
converted into the Maxwell first equation. Relationship 
(2.11) is more informative than Maxwell equation  

Brot E
t

∂
= −

∂




. 

Since in connection with the fact that 
0rot grad ≡  , in Maxwell equation there is no 

information about the potential forces, designated 

through ( )Be grad v A


.  

 Let us write down the amount of Lorentz force 
in the terms of the magnetic vector potential: 

                                                                                           

(2.12) 

Is more preferable, since the possibility to 
understand the complete structure of this force gives. 

 Faraday law (2.2) is called the law of 
electromagnetic induction, however this is terminological 
error. This law should be called the law of 
magnetoelectric induction, since the appearance of 
electrical fields on by a change in the magnetic caused 
fields on. 

However, in the classical electrodynamics there 
is no law of magnetoelectric induction, which would 
show, how a change in the electrical fields on, or motion 
in them, it leads to the appearance of magnetic fields 
on. The development of classical electrodynamics 
followed along another way. Ampere law was first 
introduced: 

H d l I=∫


 ,                                            
      ( 2.13)

 

where  I is current, which crosses the area, 
included by the outline of integration. In the differential 
form relationship (2.13) takes the form: 

rot H jσ=
 

,      
                                                    (2.14) 

where jσ is current density of conductivity.
 

Maxwell supplemented relationship (2.14) with 
bias current

 

© 2015  Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
  

  
 

(
)

V
ol
um

  
  
 

  
Y
e
a
r

20
15

8

F
e 

 X
V
  

Is
su

e 
IX

 V
er
si
on

 I
  

     
           

Unipolar Induction in the Concept of the Scalar-Vector Potential

′

[ ] ( ) ( )L B B BF e E e v ro tA e E е v A еgrad v A′ = + × = − ∇ +
      



Drot H j
tσ

∂
∂

= +


 
.                                            (2.15) 

If we from relationship (2.15) exclude 
conduction current, then the integral law follows from it 

DHd l
t

∂ Φ
=

∂∫


 ,                                           (2.16) 

where D D dSΦ = ∫


 the flow of electrical induction. 

     If we in relationship (2.16) use the substantional 
derivative, as we made during the writing of the Faraday 
law, then we will obtain [1-10]: 

[ ]DH d l d S D v d l v d iv D d S
t

∂
∂

′ ′ ′ ′= + × +∫ ∫ ∫ ∫


     
  .   

        (2.17) 
In contrast to the magnetic fields, when 

0divB =


,  for the electrical fields on divD ρ=


and last 
term in the right side of relationship (2.8) it gives the 
conduction current of  and from relationship (2.7) the 
Ampere law immediately follows. In the case of the 
absence of conduction current from relationship (2.17) 
the equality follows: 

[ ]H H v D′ = − ×
  

.                                            (2.18) 

As shown in the work [2], from relationship 
(2.18) follows and Bio-Savara law, if for enumerating the 
magnetic fields on to take the electric fields of the 
moving charges. In this case the last member of the 
right side of relationship (2.17) can be simply omitted, 
and the laws of induction acquire the completely 
symmetrical form [6]  

BE dl ds v B dl Ht
DH dl ds v D dl Ht

∂  ′ ′ ′=− + ×∫ ∫∫  ∂

∂  ′ ′ ′ ′= − ×∫ ∫ ∫  ∂


   

 


   

 

,                                           ( 2.19)

 
or B

rotE rot v Bt
D

rotH rot v Ddt

∂
 ′ = − + × ∂

∂
 ′ = − × 


 


   

.     

                                   
      

(2.20)

 For dc fields on these relationships they take the form:

 E v B

H v D

 ′ = × 

 ′ = − × 

 

    .

 
                                            (2.21)

 

In relationships (2.19-2.21), which assume the 
validity of the  Galileo conversions, prime and not prime 

values present fields and elements in moving and fixed 
inertial reference system (IS) respectively. It must be 
noted, that conversions (2.21) earlier could be obtained 
only from the  Lorenz conversions.   

The relationships (2.19-2.21), which present the 
laws of induction, do not give information about how 
arose fields in initial fixed IS. They describe only laws 
governing the propagation and conversion fields on in 
the case of motion with respect to the already existing 
fields. 

The relationship (2.21) attest to the fact that in 
the case of relative motion of frame of references, 

between the fields E


 and H


 there is a cross coupling, 

i.e. motion in the fields H


 leads to the appearance 

fields on E


 and vice versa. From these relationships 
escape the additional consequences, which were for the 
first time examined in the work.  

The electric field 2
gE rπε= outsidethe 

chargedlong rodwith alinear density g decreases as
1
r , 

where r isdistance from the centralaxis of the rodto the 
observation point. 

 If we in parallel to the axis of rod in the field  E  

begin to move with the speed  v∆  another IS, then in it 
will appear the additional magnetic field H E vε∆ = ∆ . If 
we now with respect to already moving IS begin to move 
third frame of reference with the speed v∆ , then already 
due to the motion in the field H∆  will appear additive to 

the electric field ( )2E E vµε∆ = ∆ . This process can be 

continued and further, as a result of which can be 
obtained the number, which gives the value of the 

electric field ( )E rv′  in moving IS with reaching of the 

speed v n v= ∆ , when 0v∆ → , and n→∞ .  In the final 
analysis in moving IS the value of dynamic electric field 
will prove to be more than in the initial and to be 
determined by the relationship [7]: 

( ), 2

vgch vcE r v Echr cπε

⊥

⊥
⊥′ = = . 

If speech goes about the electric field of the 
single charge  e , then its electric field will be determined 
by the relationship:

 

( ) 2, 4

vech cE r v rπε

⊥

⊥′ =  , 

where v⊥ is normal component of charge rate to 
the vector, which connects the moving charge and 
observation point.
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Unipolar Induction in the Concept of the Scalar-Vector Potential



 Expression for the scalar potential, created by 
the moving charge, for this case will be written down as 
follows: 

( , ) ( )4

vech vcr v r chr cϕ ϕπε

⊥

⊥
⊥′ = = ,                                       (2.22)

 

where ( )rϕ is scalar potential of fixed charge. The 

potential ( , )r vϕ ⊥′  can be named scalar-vector, since it 
depends not only on the absolute value of charge, but 
also on speed and direction of its motion with respect to 
the observation point. Maximum value this potential has 
in the direction normal to the motion of charge itself. 
Moreover, if charge rate changes, which is connected 
with its acceleration, then can be calculated the electric 
fields, induced by the accelerated charge. 
      During the motion in the magnetic field, using the 
already examined method, we obtain: 

( ) vH v Hch c
⊥

⊥′ = . 

where v⊥ is speed normal to the direction of the 
magnetic field. 

 If we apply the obtained results to the 
electromagnetic wave and to designate components 
fields on parallel speeds IS as E↑ , H↑ , and E⊥ , H⊥ as 

components normal to it, then with the conversion fields 
on components, parallel to speed will not change, but 
components, normal to the direction of speed are 
converted according to the rule                   

,

1
,

v v v
E E ch v B shc c c

v v
B B ch v E shc vc c

⊥ ⊥ ⊥

⊥ ⊥ ⊥

′ = + ×

′ = − ×

  

  
                                     

(2.23)

 

where c  is speed of light. 
Conversions fields  (2.23) they were for the first 

time obtained in the work [8]. 

 
  

   
  

 

  

 

 

 

  

           
 

 

 

 

 

2

2

0 0 0 1

0 0 1 0

0 1/ 0 0

1/ 0 0 0

y

z

y

z

E

E
U AU v U

Bc
B

c

 −   
  
  ∆ = ∆ =   
       − 

If one assumes that the speed of system is 
summarized for the classical law of addition of velocities, 
i.e. the speed of final IS NK K′=

 

relative to the  initial 

system  K

 

is

 

v N v= ∆ , then we will obtain the matrix 
system of the differential equations of

 ( ) ( )dU v AU vdv = ,                                            (2.27)

 

with the matrix of the system v independent of the 
speed A

 

. The solution of system is expressed as the 
matrix exponential curve exp( )vA :
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Unipolar Induction in the Concept of the Scalar-Vector Potential

     

  

However, the iteration technique, utilized for 
obtaining the given relationships, it is not possible to 
consider strict, since its convergence is not explained  
Let us give a stricter conclusion in the matrix form [7]. 

Let us examine the totality IS of such, that IS K1

moves with the speed v∆ relative to IS K, IS K2 moves 
with the same speed  v∆ relative to K1 , etc. If the 
module of the speed  v∆ is small (in comparison with 
the speed of light c), then for the transverse components 
fields on in IS K1, K2,…. we have:

2

1 1

2

2 1 1 2 1 1

/

/

E E v B B B v E c

E E v B B B v E c

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

= + ∆ × = − ∆ ×

= + ∆ × = − ∆ ×

      

      

(2.24)
Upon transfer to each following IS of field are 

obtained increases in E∆


and B∆


2, /E v B B v E c⊥ ⊥∆ =∆ × ∆ =−∆ ×
    

,                                  (2.25)

where of the field E⊥


and B⊥


relate to current IS. 

Directing Cartesian axis x along v∆ , let us rewrite (4.7) 
in the components of the vector 

2, , /y z y y zE B v E B v B E v c∆ =− ∆ ∆ = ∆ ∆ = ∆ .                

(2.26)

Relationship (2.26) can be represented in the 
matrix form

( ) exp( ) , (0)U U v vA U U U′≡ = = ,   
   

  (2.28)

here U is matrix column fields on in the system K , and 
U ′ is matrix column fields on in the system K ′ . 
Substituting (2.28) into system (2.27), we are convinced, 
that U ′ is actually the solution of system (2.27):



            

   

 

 
 

  

[ ]exp( )( ) exp( ) ( )
d vAdU v U A vA U AU vdv dv= = = .

 

It remains to find this exponential curve by its 
expansion in the series:

 

2 2 3 3 4 41 1 1exp( ) ...2! 3! 4!va E vA v A v A v A= + + + + +

 

whereE

 

is unit matrix with the size 4 4× . For this it is 
convenient to write down the matrix A

 

in the unit type 
form 

 
 

2

0 0 1 0 0
, , 0 .

/ 0 1 0 0 0
A

c

α
α

α

     −     = = =
     −     

 

then

 

2 2
2

2

/ 0

0 /

c
A

c

α

α

 − =
 − 

,   
3 2

3 4

0 /3

/ 0

c
A

c

α

α

 
 =
 − 

,

 

4 4

4 4

/ 04

0 /

c
A

c

α

α

 
 =
 
 

,  
5 4

5 6

0 /5

/ 0

c
A

c

α

α

 − =
 
 

…..

 

And the elements of matrix exponential curve take the 
form

 

[ ] [ ]
2 4

2 411 22
exp( ) exp( ) ....,

2! 4!
v vvA vA I
c c

= = − + −

 

[ ] [ ]
3 5

2
321 12 5exp( ) exp( ) ..... ,

3! 5!
v v vvA c vA Ic c c c

α  
=− = − + − 

 

 

where I is the unit matrix 2 2× . It is not difficult to see 
that 2 4 6 8 .... Iα α α α− = =− = = = , therefore we finally 
obtain

 

( )

( )
( )

/ /
exp( )

/ / /

/ 0 0 /

0 / / 0

0 / / / 0

/ / 0 0 /

Ich v c c sh v c
vA

sh v c c Ich v c

ch v c csh v c

ch v c csh v c

ch v c c ch v c

sh v c c ch v c

α

α

 − 
= = 
 
 

 − 
 
 
 
 
 
 − 
 

.

 

Substituting there exp( )vA , we find

 

( ) ( )
/ / , / / ,

/ / / , / / /

y y z z z y

z yy y z z

E E ch v c cB sh v c E E ch v c cB sh v c

B B ch v c E c sh v c B B ch v c E c sh v c

′ ′= − = +

′ ′= + = −

or in the
 
vector record

 
,

1 ,

v v v
E E ch v B shc c c

v v
B B ch v E shc vc c

⊥ ⊥ ⊥

⊥ ⊥ ⊥

′ = + ×

′ = − ×

  

  
         

                       
(2.29)

 
This is conversions (2.23).

 III.
 

Unipolar
 
Induction in the

 Concept of the
 
Scalar-Vector

 Potential
 Let

 
us

 
examine

 
the

 
case,

 
when

 
there

 
is a single 

long
 
conductor,

 
along

 
which

 
flows

 
the

 
current.

 
We

 
will

 
as

 before
 
consider

 
that

 
in

 
the

 
conductor

 
is a system of

 
the

 mutually
 
inserted

 
charges

 
of

 
the

 
positive

 
lattice g +

and
 free

 

electrons g −
,

 

which

 

in

 

the absence current

 

neutralize

 

each

 

other

 

(Fig.1).

  

The

 

electric

 

field,

 

created

 

by

 

rigid

 

lattice

 

depending on

 

the

 

distancer from

 

the

 

center

 

of

 

the

 

conductor,

 

that

 

is

 

located

 

along

 

the

 

axis z

 

it

 

takes

 

the

 

form  

2
gE rπε

+
+ = .                                                (3.1)

 

 
 
 

           
     

© 20 15    Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

(
)

V
ol
um

e 
 X

V
  

Is
su

e 
IX

 V
er
si
on

 I
  

  
  
 

  

11

Y
e
a
r

20
15

F

Unipolar Induction in the Concept of the Scalar-Vector Potential



z

r

1g
+

1g
-

1v

Fig. 1 :  Section is the conductor, along which flows the current. 

We will consider that the direction of the vector 
of electric field coincides with the direction r . If 
electronic flux moves with the speed, then the electric 
field of this flow is determined by the equality  

2
1 1

2
112 2 2

v vg gE chr c r cπε πε

− −
−  
= − ≅ − + 

 .      
        (3.2) 

Adding (3.1)  (3.2), we obtain: 
2
1
24

g vE
c rπε

−
− = − . 

This means that around the conductor with the 
current is an electric field, which corresponds to the 
negative charge of conductor. However, this field has 
insignificant value, since in the real conductors. This field 
can be discovered only with the current densities, which 

can be achieved in the superconductors, which is 
experimentally confirmed in works. 
           

        

        
           

  

2

2
112 2

g vE r cπε

+
+  
= + 

 
,                        (3.3) 

2
1

2

( )112 2
v vgE r cπε

−
−  −
= − + 

 
.   

   
             
(3.4) 

 
 

z

r

1g
+

1g
-

1v

v

Fig. 2 :  Moving conductor with the current

.Adding (3.3) and (3.4), we obtain: 

2
1 1
2 2

1
2 2

v v vgE r c cπε
+  
= − 

 
.                      (3.5)

 

In
 

this
 

relationship
 

as
 

the
 

specific
 

charge
 

is
 

undertaken
 
its

 
absolute

 
value. since the

 
speed

 
of

 
the

 

mechanical
 
motion

 
of

 
conductor

 
is

 
considerably

 
more

 

than
 
the

 
drift

 
velocity

 
of

 
electrons,

 
the

 
second

 
term

 
in

 
the

 

brackets
 
can

 
be disregarded. In

 
this

 
case

 
from

 
(3.5)

 
we

 

obtain
 

 

1
22

gv vE
c rπε

+ = .                                             (3.6)

 

The

 

obtained

 

result

 

means

 

that

 

around

 

the

 

moving

 

conductor,

 

along

 

which

 

flows

 

the

 

current,

 

with

 

respect

 

to

 

the

 

fixed

 

observer

 

is

 

formed

 

the

 

electric

 

field,

 

determined

 

by

 

relationship

 

(3.6),

 

which

 

is

 

equivalent

 

to

 

appearance

 

on

 

this

 

conductor

 

of

 

the

 

specific

 

positive

 

charge

 

of

 

the

 

equal
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Let us examine the case, when very section of
the conductor, on which with the speed 1v flow the
electrons, moves in the opposite direction with speed v
(Fig. 2). In this case relationships (3.1) and (3.2) will take
the form



1
2

gv vg
c

+ = . 

If we conductor roll up into the ring and to 
revolve it then so that the linear speed of its parts would 
be equal v , then around this ring will appear the electric 
field, which corresponds to the presence on the ring of 
the specific charge indicated. But this means that the 

        
         

consists. During

 

the

 

motion

 

of

 

linear

 

conductor

 

with

 

the

 

current

 

the

 

electric

 

field

 

will

 

be

 

observed

 

with

 

respect

 

to

 

the

 

fixed

 

observer,

 

but

 

if

 

observer

 

will

 

move

 

together

 

with

 

the

 

conductor,

 

then

 

such

 

fields

 

will

 

be absent.  
 

As

 

is

 

obtained the

 

unipolar

 

induction,

 

with

 

which

 

on

 

the

 

fixed

 

contacts a potential

 

difference

 

is

 

obtained,

 

it

 

is

 

easy

 

to understand from

 

Fig.

 

3.

 
 

Fig. 3 :
 
Diagram

 
of

 
formation

 
emf.

 
unipolar

 
induction.

 

 

We

 

will consider that

 
1r

 

and 2r
 

of

 

the

 coordinate

 

of

 

the

 

points

 

of

 

contact

 

of

 

the tangency of

 

the

 contacts,

 

which

 

slide

 

along

 

the

 

edges

 

of

 

the

 

metallic

 plate,

 

which

 

moves

 

with

 

the

 

same

 

speed

 

as

 

the

 conductor,

 

along

 

which

 

flows

 

the

 

current.

 

Contacts

 

are

 connected

 

to

 

the

 

voltmeter,

 

which

 

is

 

also

 

fixed.

 

Then,

 

it

 is

 

possible

 

to

 

calculate a potential

 

difference

 

between

 these

 

contacts,

 

after

 

integrating

 

relationship

 

(3.6):

 
2

1

1 1 2
2 2

1
ln

2 2
r

r

gv v gv v rdrU r rc cπε πε
= =∫ .

 

 But
 

in
 

order
 

to
 

the
 

load,
 

in
 

this
 

case
 

to
 

the
 voltmeter,

 
to

 
apply

 
this

 
potential

 
difference,

 
it
 

is
 necessary sliding contacts

 
to

 
lock

 
by

 
the

 
cross

 connection,
 

on
 

which
 

there
 

is no potential
 

difference
 indicated. But since metallic

 
plate

 
moves

 
together

 
with

 the
 
conductor, a potential

 
difference

 
is absent on

 
it.

 
It
 serves

 

as

 

that

 

cross

 

connection,

 

which

 

gives

 

the

 

possibility

 

to

 

convert

 

this

 

composite

 

outline

 

into

 

the

 

source

 

emf

 

with

 

respect

 

to

 

the

 

voltmeter.
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Unipolar Induction in the Concept of the Scalar-Vector Potential

revolving turn, which is the revolving magnet, acquires
specific electric charge on wire itself, of which it



Fig. 4 : Schematic of unipolar generator with the revolving turn with the current and the revolving conducting ring. 

 Now it is possible wire to roll up into the ring 
(Fig. 4) of one or several turns, and to feed it from the 
current source [9-11]. Moreover contacts 1 should be 
derived on the collector rings, which are located on the 
rotational axis and to them joined the friction fixed 
brushes.  Thus, it is possible to obtain the revolving 
magnet. In this magnet should be placed the conducting 
disk with the opening, which revolves together with the 
turns of the wire, which serves as magnet, and with the 
aid of the fixed contacts, that slide on the generatrix of 
disk, tax voltage on the voltmeter. As the limiting case it 
is possible to take continuous metallic disk and to 

connect sliding contacts to the generatrix of disk and its 
axis. Instead of the revolving turn with the current it is 
possible to take the disk, magnetized in the axial 
direction, which is equivalent to turn with the current, in 
this case the same effect will be obtained. 

 Different combinations of the revolving and 
fixed magnets and disks are possible.  

        
     

           
   

 

Fig. 5 :
 
Case

 
of

 
fixed

 
magnet and revolving disk. 

In this case the following relationships are fulfilled: 
The electric field, generated in the revolving disk 

by the electrons, which move along the conductor, is 
determined by the relationship 
 

 

and by

 

the

 

fixed

 

ions
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2
1 1

2

( )112 2 2
v v v vg gE chr c r cπε πε

− −
−

 − −
= − = − + 

 
,

2

2
112 2 2

g v g vE chr c r cπε πε

+ −
+  
= = + 

 
.

The summary tension of electric field in this
case will comprise

The case with the fixed magnet and the
revolving conducting disk is characterized by the
diagram, depicted in Fig. 5, if the conducting plate was
rolled up into the ring.



 

        
   

1
22
vvgE r cπε∑

 =  
 

,

 

and a potential

 

difference

 

between

 

the

 

points

 

1r

 

and 2r

 

in

 

the

 

coordinate system, which

 

moves

 

together

 

with

 

the

 

plate,

 

will

 

be

 

equal

 

2 1 1
2

( )
2

g r r vvU r cπε
−  =  

 
.

 

Since

 

in

 

the

 

fixed

 

with

 

respect

 

to

 

the

 

magnet

 

of

 

the

 

circuit

 

of

 

voltmeter

 

the induced potential

 

difference

 

is

 

absent, the

 

potential

 

difference

 

indicated

 

will

 

be

 

equal

 

by

 

the

 

electromotive

 

force

 

of

 

the

 

generator

 

examined.

 

As

 

earlier

 

moving

 

conducting

 

plate

 

can

 

be

 

rolled

 

up

 

into

 

the

 

disk with

 

the opening, and the

 

wire,

 

along

 

which

 

flows

 

the

 

current

 

into

 

the

 

ring

 

with

 

the

 

current,

 

which

 

is

 

the

 

equivalent

 

of

 

the

 

magnet,

 

magnetized

 

in

 

the

 

end

 

direction.  

 
 

Thus,

 

the

 

concept

 

of

 

scalar-vector

 

potential

 

gives answers

 

to

 

all

 

presented questions. 

IV.

 

Conclusion

 

The

 

unipolar

 

induction

 

was

 

discovered

 

still  
Faraday

 

almost

 

200

 

years

 

ago,

 

but

 

in

 

the

 

classical

 

electrodynamics

 

of

 

final answer to

 

that

 

as and why

 

work

 

some

 

constructions

 

of

 

unipolar

 

generators,

 

there

 

is no 
up

 

to

 

now.

 

Let

 

us

 

show

 

that

 

the

 

concrete answers to

 

all

 

these questions can

 

be

 

obtained

 

within

 

the

 

framework

 

the

 

concept

 

of

 

scalar-vector

 

potential.

 

This

 

concept,

 

obtained

 

from

 

the

 

symmetrical

 

laws

 

of

 

induction,

 

assumes

 

the dependence of

 

the

 

scalar

 

potential

 

of

 

charge and pour

 

on

 

it

 

from

 

the

 

charge

 

rate.

 

The

 

symmetrization

 

of

 

the

 

equations

 

of

 

induction

 

is

 

achieved

 

by

 

the

 

way

 

of

 

their

 

record

 

with

 

the

 

use

 

by

 

substantial

 

derivative.

 

Different

 

the

 

schematics

 

of

 

unipolar

 

generators

 

are

 

given and is

 

examined

 

their

 

operating

 

principle

 

within

 

the

 

framework

 

of

 

the

 

concept

 

of

 

scalar-
vector

 

potential.
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