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Abstract  The problems considered refer to the material equations of electromagnetic and magnetoelectric 
induction and physical interpretation of the parameters ( )ε ω  and ( )µ ω . Some contradictions found in fundamental 
studies on classical electrodynamics have been explained. The notion magnetoelectric induction has been introduced, 
which permits symmetrical writing of the induction laws. It is shown that the results of the special theory of 

relativity can be obtained from these laws through the Galileo conversions with the accuracy to the 
2

2
v
c

terms. The 

permittivity and permeability of materials media are shown to be independent of frequency. The notions 
magnetoelectrokinetic and electromagnetopotential waves and kinetic capacity have been introduced. It is shown 
that along with the longitudinal Langmuir resonance, the transverse resonance is possible in nonmagnetized plasma, 
and both the resonances are degenerate. A new notion scalar-vector potential is introduced, which permits solution 
of all present-day problems of classical electrodynamics. The use of the scalar-vector potential makes the magnetic 
field notion unnecessary. 
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1. Introduction 
The laws of classical electrodynamics they reflect 

experimental facts they are phenomenological.  
Unfortunately, contemporary classical electrodynamics is 
not deprived of the contradictions, which did not up to 
now obtain their explanation.  

The fundamental equations of contemporary classical 
electrodynamics are the Maxwell equation. They are 
written as follows for the vacuum: 

 ,Brot E
t

∂
= −

∂





 (1.1)  

 ,Drot H
t

∂
=
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
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 (1.2) 

 0,div D =
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 (1.3) 

 0,div B =
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 (1.4) 

where E


 and H


are tension of electrical and magnetic 
field, 0D Eε=

 

 and 0B Hµ=
 

are electrical and magnetic 

induction, 0µ  and 0ε are magnetic and dielectric constant 
of vacuum. From Maxwell equations follow the wave 
equations  
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These equations show that in the vacuum can be 
extended the plane electromagnetic waves, the velocity of 
propagation of which is equal to the speed of light  

 
0 0

1 .c
µ ε

=  (1.7) 

For the material media the Maxwell equations take the 
following form: 
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 ,div D ne=


 (1.10) 

 0,div B =


 (1.11) 

where µ  and ε  are the relative magnetic and dielectric 
constants of the medium and n , e  and v  are density, 
value and charge rate. 

The equations (1.1 - 1.11) are written in the assigned 
inertial reference frame  (IRF) and in them there are no 
rules of passage of one IRF to another. These equations 
assume that the properties of charge do not depend on 
their speed.  

In Maxwell equations are not contained indication that 
is the reason for power interaction of the current-carrying 
systems, therefore to be introduced the experimental 
postulate about the force, which acts on the moving charge 
in the magnetic field 

 0 .LF e v Hµ = × 
 

  (1.12) 

This force is called the Lorentz force. However in this 
axiomatics is an essential deficiency. If force acts on the 
moving charge, then in accordance with third Newton law 
must occur and reacting force. In this case the magnetic 
field is independent substance, comes out in the role of the 
mediator between the moving charges. Consequently, we 
do not have law of direct action, which would give 
immediately answer to the presented question, passing the 
procedure examined. I.e. we cannot give answer to the 
question, where are located the forces, the compensating 
action of magnetic field to the charge.  

The equation (1.12) from the physical point sight 
causes bewilderment. The forces, which act on the body in 
the absence of losses, must be connected either with its 
acceleration, if it accomplishes forward motion, or with 
the centrifugal forces, if body accomplishes rotary motion. 
Finally, static forces appear when there is the gradient of 
the scalar potential of potential field, in which is located 
the body. But in Eq. (1.12) there are no such forces. Usual 
rectilinear motion causes the force, which is normal to the 
direction motion. In the classical mechanics the forces of 
this type are unknown. 

Is certain, magnetic field is one of the important 
concepts of contemporary electrodynamics. Its concept 
consists in the fact that around any moving charge appears 
the magnetic field (Ampere law), whose circulation is 
determined by equation  

 ,Hdl I=∫






 (1.13) 

where I is conduction current.   Equation (1.9) is the 
consequence of Eq. (1.13), if we to the conduction current 
add bias current.  

Let us especially note that the introduction of the 
concept of magnetic field does not be founded upon any 
physical basis, but it is the statement of the collection of 
some experimental facts. Using this concept, it is possible 
with the aid of the specific mathematical procedures to 
obtain correct answer with the solution of practical 
problems. But, unfortunately, there is a number of the 
physical questions, during solution of which within the 
framework the concepts of magnetic field, are obtained 
paradoxical results. Here one of them. 

Using Eqs. (1.12) and (1.13) not difficult to show that 
with the unidirectional parallel motion of two like charges, 

or flows of charges, between them must appear the 
additional attraction. However, if we pass into the inertial 
system, which moves together with the charges, then there 
magnetic field is absent, and there is no additional 
attraction. This paradox does not have an explanation. 

Of force with power interaction of material structures, 
along which flows the current, are applied not only to the 
moving charges, but to the lattice, but in the concept of 
magnetic field to this question there is no answer also, 
since. In Eqs. (1.1-1.13) the presence of lattice is not 
considered. At the same time, when current flows through 
the plasma, occurs its compression. This phenomenon is 
called pinch effect.  In this case forces of compression act 
not only on the moving electrons, but also on the 
positively charged ions. And, again, the concept of 
magnetic field cannot explain this fact, since in this 
concept there are no forces, which can act on the ions of 
plasma. 

As the fundamental law of induction in the 
electrodynamics is considered Faraday law, consequence 
of whom is the  Maxwell first equation. However, here are 
problems. It is considered Until now that the unipolar 
generator is an exception to the rule of flow, consequently 
Farrday law is not complete.  

Let us give one additional statement of the monograph 
[1]: “The observations of Faraday led to the discovery of 
new law about the connection of electrical and magnetic 
field on: in the field, where magnetic field changes in the 
course of time, is generated electric field”. But from this 
law also there is an exception. Actually, the magnetic 
fields be absent out of the long solenoid; however, electric 
fields are generated with a change of the current in this 
solenoid around the solenoid. In the classical 
electrodynamics does not find its explanation this well 
known physical phenomenon, as phase aberration of light.  

From entire aforesaid it is possible to conclude that in 
the classical electrodynamics there is number of the 
problems, which still await their solution.  

PART I. Consideration and the 
Refinement of Some Laws and Concepts 
of Classical Electrodynamics 

2. Laws of the Magnetoelectric Induction  
The primary task of induction is the presence of laws 

governing the appearance of electrical field on, since only 
electric fields exert power influences on the charge.  

Faraday law is written as follows: 

 of ,BФ H BE dl ds ds
t t t

µ
∂ ∂ ∂

= − = − = −
∂ ∂ ∂∫ ∫ ∫

 




 



 (2.1) 

where B Hµ=
 

is magnetic induction vector, 

BФ H dsµ= ∫


  is flow of magnetic induction, and 

0µ µµ=  - magnetic permeability of medium. It follows 
from this law that the circulation integral of the vector of 
electric field is equal to a change in the flow of magnetic 
induction through the area, which this outline covers.  
From Eq. (2.1) obtain the Maxwell first equation 
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 .Brot E
t

∂
= −

∂





 (2.2) 

Let us immediately point out to the terminological error. 
Faraday law should be called not the law of 
electromagnetic, as is customary in the existing literature, 
but by the law of magnetoelectric induction, since. a 
change in the magnetic field on it leads to the appearance 
of electrical field on, but not vice versa. 

Let us introduce the vector potential of the magnetic 
field HA



, which satisfies the equality  

 ,H BA dl Фµ =∫




 

where the outline of the integration coincides with the 
outline of integration in Eq. (2.1), and the vector of is 
determined in all sections of this outline, then  then 

 .HAE
t

µ
∂

= −
∂





 (2.3) 

Between the vector potential and the electric field there 
is a local connection. Vector potential is connected with 
the magnetic field with the following equation:  

 .Hrot A H=
 

 (2.4) 

During the motion in the three-dimensional changing 
field of vector potential the electric fields find, using total 
derivative.  

 .HdAE
dt

µ′ = −




 (2.5) 

Prime near the vector E


 means that we determine this 
field in the moving coordinate system. This means that the 
vector potential has not only local, but also convection 
derivative. In this case Eq. (2.5) can be rewritten as 
follows: 

 ( ) ,H
H

AE v A
t

µ µ
∂′ = − − ∇
∂





  

where  v  is speed of system. If vector potential on time 
does not depend, the force acts on the charge  

 ( ),1 .v HF e v Aµ′ = − ∇


  
This force depends only on the gradients of vector 

potential and charge rate. 
The charge, which moves in the field of the vector 

potential HA


 with the speed v , possesses potential 
energy [1] 

 ( ).HW e vAµ= −


  

Therefore must exist one additional force, which acts 
on the charge in the moving coordinate system, namely:  

 ( ),2 .v HF grad W e grad vAµ′ = − =


  

The value ( )He vAµ


 plays the same role, as the scalar 

potential of the charge, whose gradient determines the 
force, which acts on the moving charge. Consequently, the 
composite force, which acts on the charge, which moves 
in the field of vector potential, can have three components 
and will be written down as 

 ( ) ( ).H
H H

AF e e v A e grad vA
t

µ µ µ
∂′ = − − ∇ +
∂



 

   (2.6) 

The first of the components of this force acts on the 
fixed charge, when vector potential changes in the time 
and has local time derivative. Second component is 
connected with the motion of charge in the three-
dimensional changing field of this potential. Entirely 
different nature in force, which is determined by last term 
Eq. (2.6). It is connected with the fact that the charge, 
which moves in the field of vector potential, it possesses 
potential energy, whose gradient gives force. From Eq. 
(2.6) follows 

 ( ) ( ).H
H H

AE v A grad vA
t

µ µ µ
∂′ = − − ∇ +
∂



 

   (2.7) 

This is a complete law of mutual induction. It defines 
all electric fields, which can appear at the assigned point 
of space, this point can be both the fixed and that moving. 
This united law includes and Faraday law and that part of 
the Lorentz force, which is connected with the motion of 
charge in the magnetic field, and without any exceptions 
gives answer to all questions, which are concerned mutual 
magnetoelectric induction. It is significant, that, if we take 
rotor from both parts of equality (2.7), attempting to 
obtain the Maxwell first equation, then it will be 
immediately lost the essential part of the information, 
since. rotor from the gradient is identically equal to zero. 

If we isolate those forces, which are connected with the 
motion of charge in the three-dimensional changing field 
of vector potential, and to consider that  

 ( ) ( ) ,H H Hgrad vA v A v rot Aµ µ µ  − ∇ = × 
  

    

that from Eq. (2.6) we will obtain 

 ,v HF e v rot Aµ  ′ = × 


  (2.8) 

and, taking into account (2.4), let us write down  

 vF e v Hµ  ′ = × 
 

  (2.9) 

or  

 ,vE v Hµ  ′ = × 
 

  (2.10) 

and it is final 

 .H
v

AF eE eE e e v H
t

µ
∂  ′ ′= + = − + × ∂



   

  (2.11) 

Can seem that Eq. (2.11) presents Lorentz force, 
however, this not thus. In this equation, in contrast to the 
Lorentz force the field E



 is induction. In order to obtain 
the total force, which acts on the charge, necessary to the 
right side  Eq. (2.11) to add the term e grad ϕ−  

 ,F e grad eE e v Hϕ µ∑  ′ = − + + × 
  

  

where ϕ  is scalar potential at the observation point. In 
this case Eq.  (2.7) can be rewritten as follows: 

( ) ( )H
H H

AE v A grad vA grad
t

µ µ µ ϕ
∂′ = − − ∇ + −
∂



 

  (2.12) 

or 
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 ( )( ).HdAE grad vA
dt

µ µ ϕ′ = − + −




  (2.13) 

If both parts of Eq. (2.12) are multiplied by the 
magnitude of the charge, then will come out the total force, 
which acts on the charge. From Lorentz force it will differ 

in terms of the force  HAe
t

µ
∂

−
∂



. From Eq. (2.13) it is 

evident that the value  ( )vAµ ϕ−


  plays the role of the 

generalized scalar potential.   After taking rotor from both 
parts of Eq. (2.13) and taking into account that 

0rot grad = , we will obtain 

 .dHrot E
dt

µ′ = −


 

If we in this equation replace total derivative by the 
quotient, then we will obtain the Maxwell first equation.    

After performing this operation, we obtained the 
Maxwell first equation, but they lost information about 
power interaction of the moving charge with the magnetic 
field. 

This examination maximally explained the physical 
picture of mutual induction. We specially looked to this 
question from another point of view, in order to permit 
those contradictory judgments, which occur in the 
fundamental monograph according to the theory of 
electricity.  

Previously Lorentz force was considered as the 
fundamental experimental postulate, not connected with 
the law of induction. By calculation to obtain last term of 
the right side of Eq. (2.11) was only within the framework 
special relativity (SP), after introducing two postulates of 
this theory. In this case all terms of Eq. (2.11) are obtained 
from the law of induction, using the Galileo conversions. 
Moreover Eq. (2.11) this is a complete law of mutual 
induction, if it are written down in the terms of vector 
potential. And this is the very thing rule, which gives 
possibility, knowing fields in one IRF, to calculate fields 
in another. 

The structure of the forces, which act on the moving 
charge, is easy to understand based on the example of the 
case, when the charge moves between two parallel planes, 
along which flows the current (Figure 1). Let us select for 
the coordinate axis in such a way that the axis z  would be 
directed normal to planes, and the axis y  was parallel.  

 

Figure 1. Forces, which act on the charge, which moves in the field of 
vector potential. 

Then the magnetic field xH  between them will be 
equal to the specific current yI , which flows along the 
plates. If the vector potential on the lower plate is equal to 

zero, then its yA  is the component, calculated off the 
lower plate, will grow according to the law  

 .y yA I z=  

If charge moves in the direction of the axis of y  near 
the lower plate with the speed  yv , then the force  zF , 
which acts on the charge, is determined by last term of Eq. 
(2.6) and it is equal 

 .z y yF e v Iµ=  (2.14) 

Is directed this force from the lower plate toward the 
upper. 

If charge moves along the axis of z  from the lower 
plate to the upper with the speed z yv v= , then for finding 
the force should be used already second term of the right 
side of Eq. (2.6). This force in the absolute value is again 
equal to the force, determined by Eq. (2.14), and is 
directed to the side opposite to axis y . With any other 
directions of motion the composite force will be the vector 
sum of two forces, been last terms of Eq. (2.6).  However, 
the summary amount of this force will be determined by 
Eq. (2.11), and this force will be always normal to the 
direction of the motion of charge. Earlier was considered 
the presence of this force as the action of the Lorentz force, 
whose nature was obscure, and it was introduced as 
experimental postulate. It is now understandable that it is 
the consequence of the combined action of two forces, 
different in their nature, whose physical sense is now clear.  

Understanding the structure of forces gives to us the 
possibility to look to the already known phenomena from 
other side. With which is connected existence of the forces, 
which do extend loop with the current?  In this case this 
circumstance can be interpreted not as the action of 
Lorentz force, but from an energy point of view. The 
current, which flows through the element of annular turn 
is located in the field of the vector potential, created by the 
remaining elements of this turn, and, therefore, it has it 
stored up potential energy. The force, which acts on this 
element, is caused by the presence of the potential 
gradient energy of this element and is proportional to the 
gradient to the scalar product of the current strength to the 
vector potential at the particular point. Thus, it is possible 
to explain the origin of ponderomotive (mechanical) 
forces. If current broken into the separate current threads, 
then they all will separately create the field of vector 
potential. Summary field will act on each thread 
individually, and, in accordance with last term of the right 
side of Eq. (2.6), this will lead to the mutual attraction. 
Both in the first and in the second case in accordance with 
the general principles system is approached the minimum 
of potential energy. 

One should emphasize that in Eqs. (2.8) and (2.9) all 
fields have induction origin, and they are connected first 
with of the local derivative of vector potential, then by the 
motion of charge in the three-dimensional changing field 
of this potential. If fields in the time do not change, then 
in the right side of Eqs. (2.8) and (2.9) remain only last 
terms, and they explain the work of all existing electric 
generators with moving mechanical parts, including the 
work of unipolar generator. Equation (2.7) gives the 
possibility to physically explain all composing tensions 
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electric fields, which appears in the fixed and that moving 
the coordinate systems. In the case of unipolar generator 
in the formation of the force, which acts on the charge, 
two last addend right sides of equality (2.7) participate, 
introducing identical contributions.  

With conducting of experiments Faraday established 
that in the outline is induced the current, when in the 
adjacent outline direct current is switched on or is turned 
off or adjacent outline with the direct current moves 
relative to the first outline. Therefore in general form 
Faraday law is written as follows:  

 .BdE dl
dt
Φ′ ′ = −∫






 (2.15) 

This writing of law indicates that with the 
determination of the circulation of E



 in the moving IRF,  
near E



 and dl


 must stand primes and should be taken 
total derivative. But if circulation is determined in the 
fixed IRF, then primes near E



 and dl


 be absent, but in 
this case to the right in expression (2.15) must stand 
particular time derivative. 

Complete time derivative in Eq. (2.15) indicates the 
independence of the eventual result of appearance e.m.f. 
in the outline from the method of changing the flow.  
Flow can change both due to the change of B



with time 
and because the system, in which is measured the 
circulation  E dl′ ′∫






, it moves in the three-dimensional 

changing field  B


. The value of magnetic flux in Eq. 
(2.15) is determined from the equation  

 BФ B ds′= ∫


  (2.16) 

where the magnetic induction B Hµ=
 

 is determined in 
the fixed IRF, and the element  ds′  is determined in the 
moving system. 

Taking into account Eq. (2.15), from Eq. (2.16) we 
obtain 

 .dE dl B ds
dt

′ ′ ′= −∫ ∫


 





 

and further, since d v grad
dt t

∂
= +
∂

 , let us write down [3] 

 .BE dl ds B v dl v divB ds
t

∂  ′ ′ ′ ′ ′= − − × − ∂∫ ∫ ∫ ∫


 
  

   



(2.17) 

In this case contour integral is taken on the outline dl′


, 
which covers the area of ds′ . Let us immediately note that 
entire following presentation will be conducted under the 
assumption the validity of the Galileo conversions, i.e., 
dl dl′ =


 and ds ds′ =
  . From (2.17) follows the known 

result  

 of ,E E v B ′ = + × 
  

  (2.18) 

from which follows that during the motion in the magnetic 
field the additional electric field, determined by last term 
of equation appears (2.18). Let us note that this equation is 
obtained not by the introduction of postulate about the 
Lorentz force, or from the Lorenz conversions, but 
directly from the Faraday law, moreover within the 

framework the conversions of Galileo. Thus, Lorentz 
force is the direct consequence of the law of 
magnetoelectric induction. 

The equation follows from the Ampere law 

 .HH rot A=


 

Then Eq. (2.17) can be rewritten 

 ,HAE v rot A
t

µ µ
∂  ′ = − + × ∂



  

and further 

 ( ) ( ).H
H H

AE v A grad vA
t

µ µ µ
∂′ = − − ∇ +
∂



 

   (2.19) 

Again came out Eq. (2.7), but it is obtained directly 
from the Faraday law. True, and this way thus far not 
shedding light on physical nature of the origin of Lorentz 
force, since the true physical causes for appearance and 
magnetic field and vector potential to us nevertheless are 
not thus far clear.  

With the examination of the forces, which act on the 
charge, we limited to the case, when the time lag, 
necessary for the passage of signal from the source, which 
generates vector potential, to the charge itself was 
considerably less than the period of current variations in 
the conductors. Now let us remove this limitation.  

The Maxwell second equation in the terms of vector 
potential can be written down as follows: 

 ( ) ,H Hrot rotA j A=
 



 (2.20) 

where ( )Hj A




 is certain functional from HA


, depending 
on the properties of the medium in question. If is carried 
out Ohm law j Eσ=




, then  

 ( ) .H
H

Aj A
t

σµ
∂

= −
∂






 (2.21) 

For the free space takes the form: 

 
2

2( ) .H
H

Aj A
t

µε
∂

= −
∂






 (2.22) 

For the free charges the functional takes the form: 

 of ( ) ,H H
k

j A A
L
µ

= −
 



 (2.23) 

where 2k
mL

ne
=  is kinetic inductance of charges [4]. In 

this equation  m  is the mass of charge, e  is the magnitude 
of the charge, n is charge density. 

Equations (2.21 - 2.23) reflect well-known fact about 
existence of three forms of the electric current: active and 
two reactive. Each of them has characteristic dependence 
on the vector potential. This dependence determines the 
rules of the propagation of vector potential in different 
media. Here one should emphasize that Eqs. (2.21 - 2.23) 
assume not only the presence of current, but also the 
presence of those material media, in which such currents 
can leak. The conduction current, determined by Eqs. 
(2.21) and (2.23), can the leak through the conductors, in 
which there are free current carriers. Bias current, can the 



236 International Journal of Physics  

leak through the free space or the dielectrics. For the free 
space Eq. (2.20) takes the form: 

 
2

2 .H
H

Arot rotA
t

µε
∂

= −
∂





 (2.24) 

This wave equation, which attests to the fact that the 
vector potential can be extended in the free space in the 
form of plane waves, and it on its information capability 
does not be inferior to the wave equations, obtained from 
Maxwell's equations. This equation on its information 
capability does not be inferior to wave equations for the 
electrical and magnetic field on, obtained from Maxwell 
equations.  

Everything said attests to the fact that in the classical 
electrodynamics the vector potential has important 
significance. Its use shedding light on many physical 
phenomena, which previously were not intelligible. And, 
if it will be possible to explain physical nature of this 
potential, then is solved the very important problem both 
of theoretical and applied nature. 

3. Laws of the Electromagnetic Induction  
The Faraday law shows, how a change in the magnetic 

field on it leads to the appearance of electrical field on. 
However, does arise the question about that, it does bring 
a change in the electrical field on to the appearance of 
magnetic field on?  In the case of the absence of 
conduction currents the the Maxwell second equation  
appears as follows:  

 ,E Drot H
t t

ε ∂ ∂
= =

∂ ∂

 



 

where D Eε=
 

 is electrical induction. 
And further 

 ,EH dl
t

∂Φ
=

∂∫






 (3.1) 

where E D dsΦ = ∫


 is the flow of electrical induction. 
However for the complete description of the processes 

of the mutual electrical induction of Eq. (3.1) is 
insufficient. As in the case Faraday law, should be 
considered the circumstance that the flow of electrical 
induction can change not only due to the local derivative 
of electric field on the time, but also because the outline, 
along which is produced the integration, it can move in the 
three-dimensional changing electric field. This means that 
in Eq. (3.1), as in the case Faraday law, should be replaced 
the partial derivative by the complete. Designating by the 
primes of field and circuit elements in moving IRF, we 
will obtain: 

 ,EdH dl
dt
Φ′ ′ =∫






 

and further 

 .DH dl ds D v dl v divD ds
t

∂  ′ ′ ′ ′ ′= + × + ∂∫ ∫ ∫ ∫


 
  

   

 

(3.2) 

For the electrically neutral medium 0divE =


, therefore 
the last member of right side in this expression will be 
absent. For this case Eq. (3.2) will take the form: 

 .DH dl ds D v dl
t

∂  ′ ′ ′ ′= + × ∂∫ ∫ ∫


 
 

 

 

 (3.3) 

If we in this equation pass from the contour integration to 
the integration for the surface, then we will obtain: 

 .Drot H rot D v
t

∂  ′ = + × ∂



 

  (3.4) 

If we, based on this equation, write down fields in this 
inertial system, then prime near H



and second member of 
right side will disappear, and we will obtain the bias 
current, introduced by Maxwell. But Maxwell introduced 
this parameter, without resorting to  the law of 
electromagnetic induction. If his law of magnetoelectric 
induction Faraday derived on the basis experiments with 
the magnetic fields, then experiments on the establishment 
of the validity of Eq. (3.2) cannot be at that time 
conducted was, since for conducting this experiment 
sensitivity of existing at that time meters did not be 
sufficient. 

On from Eq. (3.4) we obtain for the case of constant 
electrical field: 

 .vH v Eε  ′ = − × 
 

  (3.5) 

It is possible to express the electric field through the 
rotor of electrical vector potential, after assuming 

 .EE rot A=


 (3.6) 
Equation (3.4) taking into account Eq.  (3.6) will be 

written down: 

 .E
E

AH v rot A
t

ε ε
∂  ′ = − × ∂





  

Further it is possible to repeat all those procedures, 
which has already been conducted with the magnetic 
vector potential, and to write down the following 
equations: 

 

( ) ( )

( )

,

,

.

E
E E

E
E

E
E

AH v A grad vA
t

AH v rot A
t

dAH grad vA
dt

ε ε ε

ε ε

ε ε

∂′ = + ∇ −
∂
∂  ′ = − × ∂

′ = −



 

 











 

Is certain, the study of this problem it would be possible, 
as in the case the law of magnetoelectric induction, to 
begin from the introduction of the vector of EA



. This 
procedure was for the first time proposed in article [5]. 

The introduction of total derivatives in the laws of 
induction substantially explains physics of these processes 
and gives the possibility to isolate the force components, 
which act on the charge. This method gives also the 
possibility to obtain transformation laws fields on upon 
transfer of one IRF to another.  

4. Plurality of the Forms of the Writing of 
the Electrodynamic Laws 

In the previous paragraph it is shown that the magnetic 
and electric fields can be expressed through their vector 
potentials 
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 ,HH rot A=


 (4.1) 

 .EE rot A=


 (4.2) 

Consequently, Maxwell equations can be written down 
with the aid of these potentials: 

 H
E

Arot A
t

µ
∂

= −
∂





 (4.3) 

 .E
H

Arot A
t

ε
∂

=
∂





 (4.4) 

For each of these potentials it is possible to obtain wave 
equation, in particular 

 
2

2
E

E
Arot rot A
t

εµ
∂

= −
∂





 (4.5) 

and to consider that in the space are extended not the 
magnetic and electric fields, but the field of electrical 
vector potential. 

In this case, as can easily be seen of the Eqs. (4.1 - 4.4), 
magnetic and electric field they will be determined 
through this potential by the equations: 

 
.

E

E

AH
t

E rot A

ε
∂

=
∂

=







 (4.6) 

Space derivative Erot A


 and local time derivative  EA
t

∂
∂



 

are connected with wave equation (4.5). 
Thus, the use only of one electrical vector potential 

makes it possible to completely solve the task about the 
propagation of electrical and magnetic field on. Taking 
into account (4.6), Pointing vector can be written down 
only through the vector EA



: 

 .E
E

AP rot A
t

ε
 ∂

= × ∂ 





 

Characteristic is the fact that with this method of 
examination necessary condition is the presence at the 
particular point of space both the time derivatives, and 
space derivative of one and the same potential. 

This task can be solved by another method, after 
writing down wave equation for the magnetic vector 
potential: 
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2 .H
H

Arot rot A
t

εµ
∂

= −
∂





 (4.7) 

In this case magnetic and electric fields will be determined 
by the equations: 

 
.

H

H

H rot A

AE
t

µ

=

∂
= −

∂







 

Pointing vector in this case can be found from the 
following equation: 

 .H
H

AP rot A
t

µ
 ∂

= − × ∂ 





 

Space derivative Hrot A


 and local time derivative of 

HA
t

∂
∂



 are connected with wave equation (4.7). 

But it is possible to enter and differently, after 
introducing, for example, the electrical and magnetic 
currents 

 
,

.
E

H

j rot H

j rot E

=

=





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The equations also can be recorded for these currents: 

 
,

.

E
H

H
E

jrot j
t

jrot j
t

µ

ε

∂
= −

∂
∂

=
∂









 

This system in its form and information concluded in it 
differs in no way from Maxwell equations, and it is 
possible to consider that in the space the magnetic or 
electric currents are extended. And the solution of the 
problem of propagation with the aid of this method will 
again include complete information about the processes of 
propagation. 

The method of the introduction of new vector examined 
field on it is possible to extend into both sides ad infinitum, 
introducing all new vectorial fields. Naturally in this case 
should be introduced additional calibrations.  Thus, there 
is an infinite set of possible writings of electrodynamic 
laws, but they all are equivalent according to the 
information concluded in them. This approach was for the 
first time demonstrated in the article [5]. 

Concept of the frequency dispersion of 
dielectric constant and its physical 
interpretation 

By all is well known this phenomenon as rainbow. This 
phenomenon is owing  with the dependence on the 
frequency of the phase speed of the electromagnetic waves, 
passing through the drops of rain. Since water is dielectric, 
with the explanation of this phenomenon J. Heaviside R. 
Wul assumed that this dispersion was connected with the 
frequency dispersion (dependence on the frequency) of the 
dielectric constant of water. Since then this point of view 
is ruling [6,7,8,9]. 

However very creator of the fundamental equations of 
electrodynamics Maxwell considered that these 
parameters on frequency do not depend, but they are 
fundamental constants. As the idea of the dispersion of 
dielectric and magnetic constant was born, and what way 
it was past, sufficiently colorfully characterizes quotation 
from the monograph of well well-known specialists in the 
field of physics of plasma [6]: “J. itself. Maxwell with the 
formulation of the equations of the electrodynamics of 
material media considered that the dielectric and magnetic 
constants are the constants (for this reason they long time 
they were considered as the constants). It is considerably 
later, already at the beginning of this century with the 
explanation of the optical dispersion phenomena (in 
particular the phenomenon of rainbow) of J. Heaviside R. 
Wul showed that the dielectric and magnetic constants are 
the functions of frequency. But very recently, in the 
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middle of the 50's, physics they came to the conclusion 
that these values depend not only on frequency, but also 
on the wave vector. On the essence, this was the radical 
breaking of the existing ideas. It was how a serious, is 
characterized the case, which occurred at the seminar l. D. 
Landau into 1954. During the report A. I. Akhiezer on this 
theme of Landau suddenly exclaimed, after smashing the 
speaker: ” This is delirium, since the refractive index 
cannot be the function of refractive index”. Note that this 
said l. D. Landau - one of the outstanding physicists of our 
time”. 

It is incomprehensible from the given quotation, that 
precisely had in the form Landau. However, its subsequent 
publications speak, that it accepted this concept [7]. 

Point out, that rights there was Maxwell, who 
considered that the dielectric and magnetic constant of 
material media on frequency they do not depend.  
However, in a number of fundamental monograph on 
electrodynamics [6,7,8,9] are committed conceptual, 
systematic and physical errors, as a result of which in 
physics they penetrated and solidly in it were fastened 
such metaphysical concepts as the frequency dispersion of 
the dielectric constant of material media and, in particular, 
plasma. These physical errors penetrated in all spheres of 
physics and technology. This systematic and physical 
error became possible for that reason, that without the 
proper understanding of physics of the proceeding 
processes occurred the substitution of physical concepts 
by mathematical symbols, which appropriated physical, 
but are more accurate metaphysical, designations, which 
do not correspond to their physical sense. 

5. Plasmo-like Media  
By plasma media we will understand such, in which the 

charges can move without the losses. To such media in the 
first approximation, can be related the superconductors, 
free electrons or ions in the vacuum. In the media 
indicated the equation of motion of electron takes the form: 

 ,dvm eE
dt

=




 (5.1) 

where m  is mass electron, e  is the electron charge, E


is 
the tension of electric field, v  is speed of the motion of 
charge. 

In the article [10] it is shown that this equation can be 
used also for describing the electron motion in the hot 
plasma. 
Using an expression for the current density 

 ,j nev=


  (5.2) 

from (5.1) we obtain the current density of the 
conductivity 

 
2

.L
nej E dt
m

= ∫




 (5.3) 

In Eqs. (5.2) and (5.3) the value n  represents electron 
density. After introducing the designation  

 2k
mL

ne
=  (5.4) 

we find 

 1 .
k

Lj E dt
L

= ∫




 (5.5) 

In this case the value of kL  presents the specific kinetic 
inductance of charge carriers [4,11,12]. Its existence 
connected with the fact that charge, having a mass, 
possesses inertia properties. For the case, when electric 
field changes according to the law 0 sinE E tω=

 

, Eq. (5.5) 
will be written down: 

 0
1 cos .

k
Lj E t

L
ω

ω
= −




 (5.6) 

For the mathematical description of electrodynamic 
processes the trigonometric functions will be here and 
throughout, instead of the complex quantities, used so that 
would be well visible the phase equations between the 
vectors, which represent electric fields and current 
densities. 

From Eqs. (5.5) and (5.6) is evident that Lj


 presents 
inductive current, since its phase is late with respect to the 

tension of electric field to the angle 
2
π . 

If charges are located in the vacuum, then during the 
presence of summed current it is necessary to consider 
bias current 

 0 0 0 cos .
Ej E t
tε

∂
ε ε ω

∂
= =






 

Is evident that this current bears capacitive nature, since 
its phase anticipates the phase of the tension of electrical 

to the angle 
2
π . Summary current density will be written 

down [5,13,14,15]: 

 0
1 ,
k

Ej E dt
t L

∂
ε

∂∑ = + ∫



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or 

 0 0
1 cos .

k
j E t

L
ωε ω

ωΣ
 

= − 
 




 (5.7) 

If electrons are located in the material medium, then 
should be considered the presence of the positively 
charged ions. However, the presence of ions usually is not 
considered, since. their mass is considerably greater than 
in electrons. 

In Eq. (6.7) the value, which stands in the brackets, 
presents summary susceptance of this medium σΣ   and it 
consists it, in turn, of the the capacitive Cσ   and by the 
inductive  Lσ    of the susceptance 

 0
1 .

k
C L L

σ σ σ ωε
ωΣ = + = −  

Equation (5.7) can be rewritten and differently: 
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ωε ω
ω
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where 0
0

1

kL
ω

ε
=  is plasma frequency of Langmuir 

vibrations. 
And large temptation here appears to name the value 

 
2
0

0 02 2
1*( ) 1 ,

kL
ω

ε ω ε ε
ω ω

 
= − = −  
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by the depending on the frequency dielectric constant of 
plasma, that also is made in all existing articles on physics 
of plasma. But this is incorrect, since this mathematical 
symbol is the composite parameter, into which 
simultaneously enters the dielectric constant of vacuum 
and the specific kinetic inductance of charges. 

Let us introduce the determination of the concept of the 
dielectric constant of medium for the case of variables 
fields on for the purpose of further concrete definition of 
the study of the problems of dispersion. 

If we examine any medium, including plasma, then 
current density it will be determined by three components, 
which depend on the electric field. The current of 
resistance losses will coincide in the phase with the phase 
of electric field. The capacitive current, determined by 
first-order derivative of electric field from the time, will 

anticipate the tension of electric field on the phase to 
2
π . 

This current is called bias current.  The conduction current, 
connected with the motion of free charges and determined 
by integral of the electric field from the time, will lag 

behind the electric field on the phase to 
2
π . All three 

components of current indicated will enter into the 
Maxwell second equation and others components of 
currents be it cannot. Moreover all these three components 
of currents will be present in any nonmagnetic regions, in 
which there are losses.  Therefore it is completely natural, 
the dielectric constant of any medium to define as the 
coefficient, confronting that term, which is determined by 
the derivative of electric field by the time in the Maxwell 
second equation  . In this case one should consider that the 
dielectric constant cannot be negative value. This 
connected with the fact that through this parameter is 
determined energy of electrical field on, which can be 
only positive. 

Without having introduced this clear determination of 
dielectric constant, Landau begins the examination of the 
behavior of plasma in the ac fields [7]. In this case it does 
not extract separately bias current and conduction current, 
one of which is determined by derivative, but by another 
integral, but is introduced the united coefficient, which 
unites these two currents, introducing the dielectric 
constant of plasma. It makes this error for that reason, that 
in the case of harmonic oscillations the form of the 
function, which determine and derivative and integral, is 
identical, and they are characterized by only sign. 
Performing this operation, Landau does not understand,  
that in the case of harmonic electrical field on in the 
plasma there exist two different currents. One of them is 
bias current in the vacuum and is determined by derivative 
of electric field. Another current is conduction current and 
is determined by integral of the electric field. Moreover 
these two currents differ in the phase to 180 degrees. But 

since both currents depend on frequency, between them 
occurs competition. The conduction current predominates 
with the low frequencies, the bias current, on the contrary, 
predominates with the high. However, in the case of the 
equality of these currents, which occurs at the plasma 
frequency, occurs current resonance. 

Is accurate another point of view. Equation (5.7) can be 
rewritten and differently: 

 

2

2
0

0

1

cosj E t
L

ω
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and to introduce another mathematical symbol 
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ω
ω εω
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In this case also appears temptation to name this bending 
coefficient on the frequency kinetic inductance. But this 
value it is not possible to call inductance also, since this 
also the composite parameter, which includes those not 
depending on the frequency kinetic inductance and the 
dielectric constant of vacuum. 

Consequently, it is possible to write down: 

 0*( ) cos ,j E tωε ω ωΣ =




 

or 

 0
1 cos .
*( )

j E t
L

ω
ω ωΣ = −




 

But this altogether only the symbolic mathematical record 
of one and the same Eq. (5.7). Both equations are 
equivalent. But view neither *( )ε ω nor *( )L ω  by 
dielectric constant or inductance are from a physical point. 
The physical sense of their names consists of the 
following: 

 *( ) ,Xσ
ε ω

ω
=  

i.e. *( )ε ω  presents summary susceptance of medium, 
divided into the frequency, and 

 1*( )k
X

L ω
ωσ

=  

it represents the reciprocal value of the article of 
frequency and susceptance of medium. 

As it is necessary to enter, if at our disposal are values  
*( )ε ω  and *( )L ω , and we should calculate total specific 

energy? Natural to substitute these values in the formulas, 
which determine energy of electrical field on 

 2
0 0

1
2EW Eε=  

and kinetic energy of charge carriers 

 2
0

1 ,
2 kjW L j=  (5.8) 

is cannot simply because these parameters are neither 
dielectric constant nor inductance. It is not difficult to 
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show that in this case the total specific energy can be 
obtained from the equation  

 ( ) 2
0

*( )1
2

d
W E

d
ωε ω

ω∑ = ⋅  (5.9) 

from where we obtain 

 2 2 2 2
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1 1 1 1 1 .
2 2 2 2 k
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L
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ω
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We will obtain the same result, after using the formula 
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W E
d

ω ω
ω

 
 
 =  

The given equations show that the specific energy consists 
of potential energy of electrical field on and to kinetic 
energy of charge carriers. 

With the examination of any media by our final task 
appears the presence of wave equation. In this case this 
problem is already practically solved.  Maxwell equations 
for this case take the form: 
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 (5.10) 

where 0ε  and 0µ  is dielectric and magnetic constant of 
vacuum. 
System of equations (5.10) completely describes all 
properties of the conductors, in which be absent the ohmic 
losses.  From (5.10) we obtain 
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Hrot rot H H
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µ∂µ ε

∂
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 (5.11) 

For the case field on, time-independent, equation (5.11) 
passes into the equation of London 

 0 0,
k

rot rot H H
L
µ

+ =
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where 2

0

k
L

L
λ

µ
=  is London depth of penetration. 

Thus, it is possible to conclude that the equations of 
London being a special case of equation (5.11), and do not 
consider bias currents on the superconductor.  Therefore 
they do not give the possibility to obtain the wave 
equations, which describe the processes of the propagation 
of electromagnetic waves in the superconductors. 

Field on wave equation in this case it appears as follows 
for the electrical: 
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For constant electrical field on it is possible to write 
down: 

 0 0.
k

rot rot E E
L
µ

+ =
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Consequently,  dc  fields penetrate the superconductor 
in the same manner as for magnetic, diminishing 
exponentially. However, the density of current in this case 
grows according to the linear law  

 1 .L
k

j E dt
L

= ∫




 

The carried out examination showed that the dielectric 
constant of this medium was equal to the dielectric 
constant of vacuum and this permeability on frequency 
does not depend. The accumulation of potential energy is 
obliged to this parameter. Furthermore, this medium is 
characterized still and the kinetic inductance of charge 
carriers and this parameter determines the kinetic energy, 
accumulated on Wednesday. 

Consequently, are acquired all necessary data, which 
characterize the process of the propagation of 
electromagnetic waves in the plasmo-like media. However, 
in contrast to the conventional procedure [7,8,9] with this 
examination nowhere was introduced polarization vector, 
but as the basis of examination assumed equation of 
motion and in this case in the Maxwell second equation  
are extracted all components of current densities explicitly.  
In this case in the  Maxwell second equation  are extracted 
all components of current densities explicitly. 

In radio engineering exists the simple method of the 
idea of radio-technical elements with the aid of the 
equivalent diagrams. This method is very visual and gives 
the possibility to present in the form such diagrams 
elements both with that concentrated and with the 
distributed parameters.  The use of this method will make 
it possible better to understand, why were committed such 
significant physical errors during the introduction of the 
concept of that depending on the frequency dielectric 
constant. 

In order to show that the single volume of conductor or 
plasma according to its electrodynamic characteristics is 
equivalent to parallel resonant circuit with the lumped 
parameters, let us examine parallel resonant circuit. The 
connection between the voltage  U , applied to the 
resonant circuit, and the summed current  IΣ , which flows 
through this circuit, takes the form  

 1 ,C L
dUI I I C U dt
dt LΣ = + = + ∫  

where C
dUI C
dt

=  is current, which flows through the 

capacity, and 1
LI U dt

L
= ∫  is current, which flows 

through the inductance. 
For the case of the harmonic voltage 0 sinU U tω=  we 

obtain 

 0
1 cos .I C U t
L

ω ω
ωΣ

 = − 
 

 (5.12) 

The value, which stands in the brackets, presents 
summary susceptance  σΣ  of the circuit examined and 
consists. It consists of the capacitive Cσ  and by the 
inductive Lσ  of the susceptance 
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 1 .C L C
L

σ σ σ ω
ωΣ = + = −  

In this case Eq. (5.12) can be rewritten as follows: 
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where 2
0

1
LC

ω =  is the resonance frequency of parallel 

circuit. 
And here, just as in the case of conductors, appears 

temptation, to name the value 
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by the depending on the frequency capacity.  Conducting 
this symbol it is permissible from a mathematical point of 
view, however, inadmissible is awarding to it the 
proposed name, since. This parameter of no relation to the 
true capacity has and includes in itself simultaneously and 
capacity and the inductance of outline, which do not 
depend on frequency. It includes in itself simultaneously 
and capacity and the inductance of outline, which do not 
depend on frequency. 

Is accurate another point of view. Equation (5.12) can 
be rewritten and differently: 
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and to consider that the chain in question not at all has 
capacities, and consists only of the inductance depending 
on the frequency 
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Using expressions (5.13) and (5.14), let us write down: 

 0*( ) cosI C U tω ω ωΣ =  (5.15) 

or 

 0
1 cos .
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I U t
L

ω
ω ωΣ = −  (5.16) 

Equations (5.15) and (5.16) are equivalent, and 
separately mathematically completely is characterized the 
chain examined. But view neither *( )C ω nor *( )L ω  by 
capacity and inductance are from a physical point, 
although they have the same dimensionality. The physical 
sense of their names consists of the following: 

 *( ) ,XC σ
ω

ω
=  

i.e. *( )C ω  presents the relation of susceptance of this 
chain and frequency, and 

 1*( ) ,
X

L ω
ωσ

=  

it is the reciprocal value of the article of product 
susceptance and frequency. 

Accumulated in the capacity and the inductance energy, 
is determined from the equations 

 2
0

1 ,
2CW CU=  (5.17) 

 2
0

1 .
2LW LI=  (5.18) 

how one should enter for enumerating the energy, which 
was accumulated in the outline, if at our disposal are 

*( )C ω  and *( )L ω ? Certainly, to put these equations in 
equations (5.17) and (5.18) is impossible already at least 
because these values can be both the positive and negative, 
and energy in this case is positive value. However, it is not 
difficult to show that the summary energy, accumulated in 
the outline, is determined by the expressions: 
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1
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XdW U
d
σ
ωΣ =  (5.19) 

or 
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or 

 2
0

1
*( )1 .

2

d
L

W U
d

ω ω
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 
 
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If we paint equations (5.19) or (5.20) and (5.21), then 
we will obtain identical result, namely: 

 2 2
0 0

1 1 ,
2 2

W CU LIΣ = +  

where 0U  is amplitude of voltage on the capacity, and 

0I is amplitude of the current, which flows through the 
inductance. 

If we compare the equations, obtained for the parallel 
resonant circuit and for the conductors, then it is possible 
to see that they are identical, if we make 0 0E U→ , 

0 0j I→ , 0 Cε →  and kL L→ . Thus, the single volume 
of conductor, with the uniform distribution of electrical 
field on and current densities in it, it is equivalent to 
parallel resonant circuit with the lumped parameters 
indicated. In this case the capacity of this outline is 
numerically equal to the dielectric constant of vacuum, 
and inductance is equal to the specific kinetic inductance 
of charges. 

Thus, are obtained all necessary given, which 
characterize the process of the propagation of 
electromagnetic waves in the media examined, and it is 
also shown that in the quasi-static regime the 
electrodynamic processes in the conductors are similar to 
processes in the parallel resonant circuit with the lumped 
parameters. However, in contrast to the conventional 
procedure [7,8,9] with this examination nowhere was 
introduced polarization vector, but as the basis of 
examination assumed equation of motion and in this case 
in the  Maxwell second equation  are extracted all 
components of current densities explicitly. 
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Based on the example of monograph [7] let us examine 
a question about how similar problems, when the concept 
of polarization vector is introduced are solved for their 
solution. Paragraph 59 of this monograph, where this 
question is examined, it begins with the words: “We pass 
now to the study of the most important question about the 
rapidly changing electric fields, whose frequencies are 
unconfined by the condition of smallness in comparison 
with the frequencies, characteristic for establishing the 
electrical and magnetic polarization of substance”. 

These words mean that that region of the frequencies, 
where, in connection with the presence of the inertia 
properties of charge carriers, the polarization of substance 
will not reach its static values, is examined. With the 
further consideration of a question is done the conclusion 
that “in any variable field, including with the presence of 
dispersion, the polarization vector 0P D Eε= −

  

 (here and 
throughout all formulas cited they are written in the 
system SI) preserves its physical sense of the electric 
moment of the unit volume of substance”. 

Let us give the still one quotation: “It proves to be 
possible to establish (unimportantly - metals or dielectrics) 
maximum form of the function of ( )ε ω  with the high 
frequencies valid for any bodies. Specifically, the field 
frequency must be great in comparison with “the 
frequencies” of the motion of all (or, at least, majority) 
electrons in the atoms of this substance. With the 
observance of this condition it is possible with the 
calculation of the polarization of substance to consider 
electrons as free, disregarding their interaction with each 
other and with the atomic nuclei”  

Further is written the equation of motion of free 
electron in the ac field 

 ,dvm eE
dt

=




 

from where its displacement is located 

 2 .eEr
mω

= −


  

Then is indicated that the polarization P


 is a dipole 
moment of unit volume and the obtained displacement is 
put into the polarization  

 
2

2 .ne EP ner
mω

= =




  

In this case point charge is examined, and this operation 
indicates the introduction of electrical dipole moment for 
two point charges with the opposite signs, located at a 
distance r  

 .eP er= −


  

This step causes bewilderment, since the point electron 
is examined, and in order to speak about the electrical 
dipole moment, it is necessary to have in this medium for 
each electron another charge of opposite sign, referred 
from it to the distance r . In this case is examined the gas 
of free electrons, in which there are no charges of opposite 
signs. Further follows the standard procedure, when 
introduced thus illegal polarization vector is introduced 
into the dielectric constant  
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and since plasma frequency is determined by the equation 
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1 ,p
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ω
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the vector of the induction immediately is written  
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With this approach it turns out that constant of 
proportionality 

 ( )
2

0 21 ,pω
ε ω ε

ω

 
 = −
 
 

 

between the electric field and the electrical induction, 
illegally named dielectric constant, depends on frequency. 

Precisely this approach led to the fact that all began to 
consider that the value, which stands in this equation 
before the vector of electric field, is the dielectric constant 
depending on the frequency, and electrical induction also 
depends on frequency.  And this it is discussed in all, 
without the exception, fundamental monograph on the 
electrodynamics of material media [7,8,9].  

But, as it was shown above this parameter it is not 
dielectric constant, but presents summary susceptance of 
medium, divided into the frequency. Thus, traditional 
approach to the solution of this problem from a physical 
point of view is erroneous.  But from a mathematical point 
of view this approach let us assume however in this case 
there is no possibility of the calculation of initial 
conditions with the calculation of integral in the equations, 
which determine conduction current.  

Further into §61 of article [7] is examined a question 
about the energy of electrical and magnetic field in the 
media, which possess by the so-called dispersion. In this 
case is done the conclusion that equation for the energy of 
such field on 

 ( )2 2
0 0

1 ,
2

W E Hε µ= +  (5.22) 

of that making precise thermodynamic sense in the usual 
media, with the presence of dispersion so interpreted be 
cannot. These words mean that the knowledge of real 
electrical and magnetic field on  with the dispersion 
insufficiently for determining the difference in the internal 
energy per unit of volume of substance in the presence 
field on in their absence. After such statements is given 
the formula, which gives correct result for enumerating 
the specific energy of electrical and magnetic field on 
when the dispersion present,  

 
( )( ) ( )( )2 2
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1 1 .
2 2

d d
W E H

d d
ωε ω ωµ ω
ω ω

= +  (5.23) 

But if we compare the first part of the expression in the 
right side of Eq. (5.23) with Eq. (5.9), then it is evident 
that they coincide. This means that in Eq. (5.23) this term 
presents the total energy, which includes not only 
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potential energy of electrical field on, but also kinetic 
energy of the moving charges.  

Therefore conclusion about the impossibility of the 
interpretation of formula (5.22), as the internal energy of 
electrical and magnetic field on in the media with the 
dispersion it is correct. However, this circumstance 
consists not in the fact that this interpretation in such 
media is generally impossible. It consists in the fact that 
for the definition of the value of energy as the 
thermodynamic parameter is necessary to correctly 
calculate this energy. In this case it follows taking into 
account not only electric field, which accumulates 
potential energy, but also current of the conduction 
electrons, which accumulate the kinetic kinetic energy of 
charges (5.8). The conclusion, which now can be made, 
consists of the following.  The conclusion, which now can 
be made, consists in the fact that, introducing into the 
custom some mathematical symbols, without 
understanding of their true physical sense, and, all the 
more, the awarding to these symbols of physical 
designations unusual to them, it is possible in the final 
analysis to lead to the significant errors, that also occurred 
in the article [7].  

6. Transverse Plasma Resonance  
Is known that the plasma resonance is longitudinal. But 

the charges, which are varied lengthwise, not to emit 
transverse radio waves. However, with the explosions of 
nuclear charges, as a result of which is formed very hot 
plasma, occurs electromagnetic radiation in the very wide 
frequency band, up to the long-wave radio-frequency band. 
Today are not known those of the physical mechanisms, 
which could explain the appearance of this emission.  
There were no other resonances of any kind, except 
plasma, earlier known on existence in the nonmagnetic 
plasma. But it occurs that in the confined plasma can exist 
the transverse plasma resonance, whose frequency 
coincides with the frequency of longitudinal plasma 
resonance. Specifically, this resonance can be the reason 
for the emission of electromagnetic waves with the 
explosions of nuclear charges [13,14,15,17]. For 
explaining the conditions for the excitation of this 
resonance let us examine the long line, which consists of 
two ideally conducting planes, as shown in Figure 2 

 

Figure 2. The two-wire circuit, which consists of two ideally conducting 
planes 

Linear capacity and inductance of this line without 
taking into account edge effects they are determined by 
the equations: 

 0 0 0 0, .b aC L
a b

ε µ= =  

Therefore with an increase in the length of line its total 

capacitance 0
bC z
a

εΣ =  and summary inductance  

0
aL z
b

µΣ =  increase proportional to its length. 

If we into the extended line place the plasma, charge 
carriers in which can move without the losses, and in the 
transverse direction pass through the plasma the current  
I , then charges, moving with the definite speed, will 
accumulate kinetic energy. Let us note that here are not 
examined technical questions, as and it is possible 
confined plasma between the planes of line how. In this 
case only fundamental questions, which are concerned 
transverse plasma resonance in the nonmagnetic plasma, 
are examined. 

Since the transverse current density in this line is 
determined by the equation 

 ,Ij nev
bz

= =  

that summary kinetic energy of the moving charges can be 
written down 

 2 2
2 2

1 1 .
2 2k

m m aW abzj I
bzne ne

Σ = =  (6.1) 

Equation (6.1) connects the kinetic energy, accumulated 
in the line, with the square of current; therefore the 
coefficient, which stands in the right side of this equation 
before the square of current, is the summary kinetic 
inductance of line 

 2 .k
m aL

bzne
Σ = ⋅  (6.2) 

Thus, the value 

 2k
mL

ne
=  (6.3) 

presents the specific kinetic inductance of charges. 
Equation (6.3) is obtained for the case of the direct current, 
when current distribution is uniform. 

Subsequently for the larger clarity of the obtained 
results, together with their mathematical idea, we will use 
the method of equivalent diagrams. The section  the lines 
examined, long  dz  can be represented in the form the 
equivalent diagram, shown in Figure 3 a. 

From (6.2) we see that the magnitude kL Σ  of the 
growth z  not increases, but it decreases. Connected this 
with the fact that with an increase in z  a quantity of 
parallel-connected inductive elements grows. 

The equivalent the schematic of the section of the line, 
filled with nondissipative plasma, it is shown in Figure 3 б.  
Line itself in this case will be equivalent to parallel circuit 
with the lumped parameters: 

 0 , ,kbz L aC L
a bz

ε
= =  
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in series with which is connected the inductance 

 0 .adz
b

µ  

 

Figure 3. а -  the equivalent the schematic of the section of the two-wire 
circuit; б - the equivalent the schematic of the section of the two-wire 
circuit, filled with nondissipative plasma; в - the equivalent the 
schematic of the section of the two-wire circuit, filled with dissipative 
plasma 

But if we calculate the resonance frequency of this 
outline, then it will seem that this frequency generally not 
on what sizes depends, actually: 

 
2

2

0 0

1 1 .
k

ne
CL L mρω ε ε

= = =  

Is obtained the interesting result, which speaks, that the 
resonance frequency macroscopic of the resonator 
examined does not depend on its sizes. Impression can be 
created, that this is plasma resonance, since the obtained 
value of resonance frequency exactly corresponds to the 
value of this resonance. But it is known that the plasma 
resonance characterizes longitudinal waves in the long 
line they, while occur transverse waves. In the case 
examined the value of the phase speed in the direction of 
z  is equal to infinity and the wave vector 0k =



. 
This result corresponds to the solution of system of 

equations (5.10) for the line with the assigned 
configuration. In this case the wave number is determined 
by the equation: 
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 (6.4) 

and the group and phase speeds 
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where 
1/2

0 0

1c
µ ε

 
=  
 

is speed of light in the vacuum. 

For the present instance the phase speed of 
electromagnetic wave is equal to infinity, which 
corresponds to transverse resonance at the plasma 
frequency.  Consequently, at each moment of time field on 
distribution and currents in this line uniform and it does 
not depend on the coordinate z  , but current in the planes 
of line in the direction of is absent. This, from one side, it 
means that the inductance LΣ  will not have effects on 
electrodynamic  processes in this line, but instead of the 
conducting planes can be used any planes or devices, 
which limit plasma on top and from below.  

From equations (6.4), (6.5) and (6.6) is evident that at 
the point pω ω=  occurs the transverse resonance with the 
infinite quality. With the presence of losses in the 
resonator will occur the damping, and in the long line in 
this case of , and in the line will be extended the damped 
transverse wave, the direction of propagation of which 
will be normal to the direction of the motion of charges. It 
should be noted that the fact of existence of this resonance 
previously was not realized and in the literature it was not 
described. 

7. Symmetrization of Maxwell Equations 
and Kinetic Capacity  

If we consider all components of current density in the 
conductor, then the  Maxwell second equation  can be 
written down [5,13,14,15,17]: 

 1
E

k

ErotH E Edt
t L

σ ε ∂= + +
∂ ∫


  

 (7.1) 

where Eσ  is conductivity of metal. 
At the same time, the Maxwell first equation  can be 

written down as follows: 

 HrotE
t

µ ∂
= −

∂





 (7.2) 

where µ  is magnetic permeability of medium. It is 
evident that equations (7.1) and (7.2) are asymmetrical. 

To somewhat improve the symmetry of these equations 
are possible, introducing into equation (7.2) term linear for 
the magnetic field, that considers heat losses in the 
magnetic materials in the variable fields: 

 H
HrotE H
t

σ µ ∂
= − −

∂



 

 (7.3) 

where Hσ  is conductivity of magnetic currents. But here 
there is no integral of such type, which is located in the 
right side of equation (7.1), in this equation. At the same 
time to us it is known that the atom, which possesses the 
magnetic moment of m , placed into the magnetic field, 
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and which accomplishes in it precessional motion, has 
potential energy of mU mHµ= −



 . Therefore potential 
energy can be accumulated not only in the electric fields, 
but also in the precessional motion of magnetic moments, 
which does not possess inertia.  Similar case is located 
also in the mechanics, when the gyroscope, which 
precesses in the field of external gravitational forces, 
accumulates potential energy. Regarding mechanical 
precessional motion is also noninertial and immediately 
ceases after the removal of external forces. For example, if 
we from under the precessing gyroscope, which revolves 
in the field of the earth's gravity, rapidly remove support, 
thus it will begin to fall, preserving in the space the 
direction of its axis, which was at the moment, when 
support was removed. The same situation occurs also for 
the case of the precessing magnetic moment. Its 
precession is noninertial and ceases at the moment of 
removing the magnetic field. 

Therefore it is possible to expect that with the 
description of the precessional motion of magnetic 
moment in the external magnetic field in the right side of 
Eq. (7.3) can appear a term of the same type as in Eq. 
(7.1). It will only stand kL , i.e., instead kC  the kinetic 
capacity, which characterizes that potential energy, which 
has the precessing magnetic moment in the magnetic field: 

 1 .H
k

HrotE H Hdt
t C

σ µ ∂
= − − −

∂ ∫


  

 

For the first time this idea of the Maxwell first equation 
taking into account kinetic capacity was given in the 
articles [5,18,19]. 

Resonance processes in the plasma and the dielectrics 
are characterized by the fact that in the process of 
fluctuations occurs the alternating conversion of 
electrostatic energy into the kinetic energy of charges and 
vice versa. This process can be named electrokinetic and 
all devices: lasers, masers, filters, etc, which use this 
process, can be named electrokinetic devices. At the same 
time there is another type of resonance - magnetic. If we 
use ourselves the existing ideas about the dependence of 
magnetic permeability on the frequency, then it is not 
difficult to show that this dependence is connected with 
the presence of magnetic resonance. In order to show this, 
let us examine the concrete example of ferromagnetic 
resonance. If we magnetize ferrite, after applying the 
stationary field 0H  in parallel to the axis z , the like to 
relation to the external variable field medium will come 
out as anisotropic magnetic material with the complex 
permeability in the form of tensor [20] 
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moreover 

 0HγΩ =  (7.4) 

is natural frequency of precession. 

 0 0 0( 1)М Hµ µ= −  (7.5) 

is a magnetization of medium. Taking into account (7.4) 
and (7.5), it is possible to write down 
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Therefore that magnetic permeability of magnetic material 
depends on frequency, and can arise suspicions, that, as in 
the case with the plasma, here is some misunderstanding. 

If we consider that the electromagnetic wave is 
propagated along the axis x  and there are components 
fields yH  and zH , then in this case the Maxwell first 
equation will be written down: 
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Taking into account (7.6), let us write down 
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For the case ω >>Ω we have 
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Assuming 0 siny yH H tω=  and taking into account that 
in this case 
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we will obtain from (7.7) 
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For the case ω << Ω we find 
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Value 

 2
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( 1)

kC
µ µ
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which is introduced in Eq. (7.8), let us name kinetic 
capacity. 

With which is connected existence of this parameter, 
and its what physical sense?  If the direction of magnetic 
moment does not coincide with the direction of external 
magnetic field, then the vector of this moment begins to 
precess around the vector of magnetic field with the 
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frequency of Ω. The magnetic moment m  possesses in 
this case potential energy  mU m B= − ⋅



 . This energy 
similar to energy of the charged capacitor is potential, 
because precessional motion, although is mechanical, 
however, it not inertia and instantly it does cease during 
the removal of magnetic field. However, with the presence 
of magnetic field precessional motion continues until the 
accumulated potential energy is spent, and the vector of 
magnetic moment will not become parallel to the vector of 
magnetic field. 

The equivalent diagram of the case examined is given 
in Figure 4. At the point ω =Ω occurs magnetic resonance, 
in this case ( )Tµ ω∗ → −∞ . The resonance frequency of 
macroscopic magnetic resonator, as can easily be seen of 
the equivalent diagram, also does not depend on the 
dimensions of line and is equal Ω. Thus, the parameter  
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is not the frequency dependent magnetic permeability, but 
it is the combined parameter, including 0µ , µ  and kC , 
which are included on in accordance with the equivalent 
diagram, depicted in Figure 4. 

 

Figure 4. Equivalent the schematic of the two-wire circuit of that filled 
with magnetic material. 

Is not difficult to show that in this case there are three 
waves: electrical, magnetic and the wave, which carries 
potential energy, which is connected with the precession 
of magnetic moments around the vector 0H . For this 
reason such waves can be named elektromagneticpotential 
waves.  

8. Dielectrics  
In the existing literature there are no indications that the 

kinetic inductance of charge carriers plays some role in 
the electrodynamic processes in the dielectrics. This not 
thus. This parameter in the electrodynamics of dielectrics 
plays not less important role, than in the electrodynamics 
of conductors. Let us examine the simplest case, when 
oscillating processes in atoms or molecules of dielectric 
obey the law of mechanical oscillator [18]. Let us write 
down the equation of motion of the electromechanical 
oscillator of  
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where mr
  is deviation of charges from the position of 

equilibrium, β  is coefficient of elasticity, which 
characterizes the elastic electrical binding forces of 
charges in the atoms and the molecules. Introducing the 
resonance frequency of the bound charges  

 0 ,
m
βω =  

we will obtain from (8.1) 
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Is evident that in Eq. (8.2) as the parameter is present 
the natural vibration frequency, into which enters the mass 
of charge. This speaks, that the inertia properties of the 
being varied charges will influence oscillating processes 
in the atoms and the molecules. 

Since the complete current density on the medium 
consists of the bias current and conduction current 
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the speed of charge carriers is derivative on the coordinate 
of their displacement  
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from Eq. (8.2) we find 
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Let us note that the value 

 2kd
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presents the kinetic inductance of the charges, entering the 
constitution of atom or molecules of dielectrics, when to 
consider charges free. Therefore Eq. (8.3) it is possible to 
rewrite 
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Since the value 
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it represents the plasma frequency of charges in atoms and 
molecules of dielectric, if we consider these charges free, 
then Eq. (8.4) takes the form: 

 
( )

2

0 2 2
0

1 .pd ErotH j
t

ω
ε

ω ω
∑

 
∂ = = −  ∂− 

 






 (8.5) 

To appears temptation to name the value 
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by the depending on the frequency dielectric constant of 
dielectric. But this, as in the case conductors, cannot be 
made, since this is the composite parameter, which 
includes now those not already three depending on the 
frequency of the parameter: the dielectric constant of 
vacuum, the natural frequency of atoms or molecules and 
plasma frequency for the charge carriers, entering their 
composition. 

Let us examine two limiting cases: 
1. If 0ω ω , then from (8.5) we obtain 
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 (8.7) 

In this case the coefficient, confronting the derivative, 
does not depend on frequency, and it presents the static 
dielectric constant of dielectric. As we see, it depends on 
the natural frequency of oscillation of atoms or molecules 
and on plasma frequency. This result is intelligible. 
Frequency in this case proves to be such low that the 
charges manage to follow the field and their inertia 
properties do not influence electrodynamic processes. In 
this case the bracketed expression in the right side Eq. (8.7) 
presents the static dielectric constant of dielectric. As we 
see, it depends on the natural frequency of oscillation of 
atoms or molecules and on plasma frequency. Hence 
immediately we have a prescription for creating the 
dielectrics with the high dielectric constant. In order to 
reach this, should be in the assigned volume of space 
packed a maximum quantity of molecules with maximally 
soft connections between the charges inside molecule 
itself. 
2. The case, when 0ω ω  
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1 pd ErotH j
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ω
ε

ω
∑
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and dielectric became conductor (plasma), since the 
obtained equation exactly coincides with the equation, 
which describes plasma. 

One cannot fail to note the circumstance that in this 
case again nowhere was used this concept as polarization 
vector, but examination is carried out by the way of 
finding the real currents in the dielectrics on the basis of 
the equation of motion of charges in these media. In this 
case as the parameters are used the electrical 
characteristics of the media, which do not depend on 
frequency. 

From Eq. (8.5) is evident that in the case of fulfilling 
the equality 0ω ω= , the amplitude of fluctuations is equal 
to infinity. This indicates the presence of resonance at this 
point. The infinite amplitude of fluctuations occurs 
because of the fact that they were not considered losses in 
the resonance system, in this case its quality was equal to 
infinity. In a certain approximation it is possible to 
consider that lower than the point indicated we deal 
concerning the dielectric, whose dielectric constant is 
equal to its static value. Higher than this point we deal 

already actually concerning the metal, whose density of 
current carriers is equal to the density of atoms or 
molecules in the dielectric. 

Now it is possible to examine the question of why 
dielectric prism decomposes polychromatic light into 
monochromatic components or why rainbow is formed. 
So that this phenomenon would occur, it is necessary to 
have the frequency dispersion of the phase speed of 
electromagnetic waves in the medium in question.  If we 
to Eq. (8.5) add the  Maxwell first equation  , then we will 
obtain: 
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from where we immediately find the wave equation: 
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If one considers that 

 0 0 2
1 ,
c

µ ε =  

where c  is speed of light, then no longer will remain 
doubts about the fact that with the propagation of 
electromagnetic waves in the dielectrics the frequency 
dispersion of phase speed will be observed.  But this 
dispersion will be connected not with the fact that this 
material parameter as dielectric constant, it depends on 
frequency. In the formation of this dispersion it will 
participate immediately three, which do not depend on the 
frequency, physical quantities: the self-resonant frequency 
of atoms themselves or molecules, the plasma frequency 
of charges, if we consider it their free, and the dielectric 
constant of vacuum. 

Now let us show, where it is possible to be mistaken, if 
with the solution of the examined problem of using a 
concept of polarization vector. Let us introduce this 
polarization vector   
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neP E
m ω ω
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Its dependence on the frequency, is connected with the 
presence of mass in the charges, entering the constitution 
of atom and molecules of dielectrics. The inertness of 
charges is not allowed for this vector, following the 
electric field, to reach that value, which it would have in 
the permanent fields.  Since the electrical induction is 
determined by the equation: 
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 (8.8) 

that, introduced thus, it depends on frequency. 
If the vector D



 was introduced into the Maxwell 
second equation, then it will take the form: 
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where j∑  is the summed current, which flows through the 
model. In expression (8.9) the first member of right side 
presents bias current in the vacuum. The second term 
presents the current, which is the consequence of the 
presence of bound charges in atoms or molecules of 
dielectric. In this expression again appeared the specific 
kinetic inductance of the charges, which participate in the 
oscillating process  

 2 .kd
mL

ne
=  

This kinetic inductance determines the inductance of 
bound charges. Taking into account this Eq. (8.9) it is 
possible to rewrite 
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Obtained expression exactly coincides with Eq. (8.3). 
Consequently, the eventual result of examination by both 
methods coincides, and there are no claims to the method 
from a mathematical point of view. But from a physical 
point of view are large claims, which we already discussed. 
Is certain, this not electrical induction, but the certain 
composite parameter. In the essence, physically 
substantiated is the introduction to electrical induction in 
the dielectrics only in the static electric fields. 

Let us show that the equivalent the schematic of 
dielectric presents the sequential resonant circuit, whose 
inductance is the kinetic inductance kdL , and capacity is 
equal to the static dielectric constant of dielectric minus 
the capacity of the equal dielectric constant of vacuum. In 
this case outline itself proves to be that shunted by the 
capacity, equal to the specific dielectric constant of 
vacuum. For the proof of this let us examine the sequential 
oscillatory circuit, when the inductance L  and the 
capacity C  are connected in series. 

The connection between the current CI , which flows 
through the capacity C , and the voltage CU , applied to it, 
is determined by the equations: 

 1
C CU I dt

C
= ∫  

and 

 .C
C

dU
I C

dt
=  (8.10) 

This connection will be written down for the inductance: 

 1
C LI U dt

L
= ∫  

and 

 .L
L

dIU L
dt

=  

If the current, which flows through the series circuit, 
changes according to the law 0 sinI I tω= , then a voltage 
drop across inductance and capacity they are determined 
by the equations  

 0 cosLU LI tω ω=  

and 

 0
1 cos ,CU I t
C

ω
ω

= −  

and total voltage applied to the outline is equal 

 0
1 cos .U L I t
C

ω ω
ωΣ

 = − 
 

 

In this equation the value, which stands in the brackets, 
presents the reactance of sequential resonant circuit, which 
depends on frequency. The voltage, generated on the 
capacity and the inductance, are located in the reversed 
phase, and, depending on frequency, outline can have the 
inductive, the whether capacitive reactance. At the point 
of resonance the summary reactance of outline is equal to 
zero. 

It is obvious that the connection between the total 
voltage applied to the outline and the current, which flows 
through the outline, will be determined by the equation 

 1 .
1

UI
tL

C
ω ω

ω

Σ∂
= −

∂ − 
 

 (8.11) 

The resonance frequency of outline is determined by the 
equation 

 0
1 ,
LC

ω =  

therefore  

 
2

2
0

.

1

UCI
tω

ω

Σ∂
=

∂ 
−  

 

 (8.12) 

Comparing this expression with Eq. (8.10) it is not 
difficult to see that the sequential resonant circuit, which 
consists of the inductance L  and capacity C , it is 
possible to present to the capacity ofin the form dependent 
on the frequency  

 ( )
2

2
0

.

1

CC ω
ω
ω

=
 
−  

 

 (8.13) 

This idea does not completely mean that the inductance 
is somewhere lost. It enters into the resonance frequency 
of the outline 0ω . Equation (8.12) this altogether only the 
mathematical form of the record of Eq. (8.11). 
Consequently, this is ( )C ω  the certain composite 
mathematical parameter, which is not the capacity of 
outline. 

Equation  (8.11) can be rewritten and differently: 
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and to consider that 
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Is certain, the parameter of ( )C ω , introduced in 
accordance with Eqs. (8.13) and (8.14) no to capacity 
refers. 

Let us examine two limiting cases: 
1. When 0ω ω , we have 

 .
UI C

t
Σ∂

=
∂

 

This result is intelligible, since. at the low frequencies the 
reactance of the inductance, connected in series with the 
capacity, is considerably lower than the capacitive and it is 
possible not to consider it.  

The equivalent the schematic of the dielectric, located 
between the planes of long line is shown in Figure 5. 

 

Figure 5. а - equivalent the schematic of the section of the line, filled 
with dielectric, for the case ω ω ; б - the equivalent the schematic of 
the section of line for the case 0ω ω ; в - the equivalent the 
schematic of the section of line for entire frequency band. 

2. For the case, when 0ω ω , we have 
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tLω
Σ∂

= −
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 (8.15) 

Taking into account that for the harmonic signal 

 2 ,
U U dt

t
ωΣ

Σ
∂

= −
∂ ∫  

we will obtain from (8.15) 

 1 .LI U dt
L Σ= ∫  

In this case the reactance of capacity is considerably less 
than in inductance and chain has inductive reactance. 

The carried out analysis show, that is in practice very 
difficult to distinguish the behavior of resonant circuits of 
the inductance or of the capacity. In order to understand 
the true composition of the chain being investigated it is 
necessary to remove the amplitude and phase response of 
this chain in the range of frequencies.  In the case of 
resonant circuit this dependence will have the typical 
resonance nature, when on both sides resonance the nature 
of reactance is different.   

In Figure 5 (a) and Figure 5 (б) are shown two limiting 
cases. In the first case, when 0ω ω , dielectric according 
to its properties corresponds to conductor, in the second 
case, when 0ω ω , it corresponds to the dielectric, 
which possesses the static dielectric constant  
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Thus, it is possible to make the conclusion that the 
introduction, the depending on the frequency dielectric 
constants of dielectrics, are physical and terminological 
error. If the discussion deals with the dielectric constant of 
dielectrics, with which the accumulation of potential 
energy is connected, then the discussion can deal only 
with the static permeability. And precisely this parameter 
as the constant, which does not depend on the frequency, 
enters into all equations, which characterize the 
electrodynamic characteristics of dielectrics. 

The most interesting results of applying such new 
approaches occur precisely for the dielectrics. In this case 
each connected pair of charges presents the separate 
unitary unit with its individual characteristics and its 
participation in the processes of interaction with the 
electromagnetic field (if we do not consider the connection 
between the separate pairs) strictly individually. Certainly, 
in the dielectrics not all dipoles have different 
characteristics, but there are different groups with similar 
characteristics, and each group of bound charges with the 
identical characteristics will resound at its frequency.  
Moreover the intensity of absorption, and in the excited 
state and emission, at this frequency will depend on a 
relative quantity of pairs of this type. Therefore the partial 
coefficients, which consider their statistical weight in this 
process, can be introduced. Furthermore, these processes 
will influence the anisotropy of the dielectric properties of 
molecules themselves, which have the specific electrical 
orientation in crystal lattice. By these circumstances is 
determined the variety of resonances and their intensities, 
which is observed in the dielectric media. The lines of 
absorption or emission, when there is a electric coupling 
between the separate groups of emitters, acquire even 
more complex structure. In this case the lines can be 
converted into the strips.  
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PART II. New Ideas in the Classical 
Electrodynamics  
9. Dynamic Potentials and the Field of the 
Moving Charges  

The way, which is concerned the introduction of total 
derivatives field on and vector potential it was begun still 
in Maxwell, since it wrote its equations in the total 
derivatives. Hertz also wrote the equations of 
electrodynamics in the total derivatives. Hertz did not 
introduce the concept of vector potentials, but he operated 
only with fields, but this does not diminish its merits.  It 
made mistakes only in the fact that the electrical and 
magnetic fields were considered the invariants of speed. 
But already simple example of long lines is evidence of 
the inaccuracy of this approach. With the propagation of 
wave in the long line it is filled up with two forms of 
energy, which can be determined through the currents and 
the voltages or through the electrical and magnetic fields 
in the line. And only after wave will fill with 
electromagnetic energy all space between the generator 
and the load on it it will begin to be separated energy. I.e. 
the time, by which stays this process, generator expended 
its power to the filling with energy of the section of line 
between the generator and the load.  But if we begin to 
move away load from incoming line, then a quantity of 
energy being isolated on it will decrease, since. the part of 
the energy, expended by source, will leave to the filling 
with energy of the additional length of line, connected 
with the motion of load. If load will approach a source, 
then it will obtain an additional quantity of energy due to 
the decrease of its length. But if effective resistance is the 
load of line, then an increase or the decrease of the power 
expendable in it can be connected only with a change in 
the stress on this resistance.  

Being located in assigned IRF, us interest those fields, 
which are created in it by the fixed and moving charges, 
and also by the electromagnetic waves, which are 
generated by the fixed and moving sources of such waves. 
The fields, which are created in this IRF by moving charges 
and moving sources of electromagnetic waves, we will 
call dynamic. Can serve as an example of dynamic field 
the magnetic field, which appears around the moving charges. 

As already mentioned, in the classical electrodynamics 
be absent the rule of the conversion of electrical and 
magnetic field on upon transfer of one inertial system to 
another. This deficiency removes SR, basis of which are 
the Lorenz conversions. With the entire mathematical 
validity of this approach the physical essence of such 
conversions up to now remains unexplained in this 
division will made attempt find the precisely physically 
substantiated ways of obtaining the conversions field on 
upon transfer of one IRF to another, and to also explain 
what dynamic potentials and fields can generate the 
moving charges. The first step in this direction was made a 
way of the introduction of the symmetrical laws of 
magnetoelectric and electromagnetic induction [5,13,14,15]. 
These laws are written as follows: 
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or 
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For the constants fields on these equations they take the 
form: 
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 (9.3) 

In Eqs. (9.1-9.3), which assume the validity of the  Galileo 
conversions present fields and elements in moving and 
fixed IRF respectively. It must be noted, that conversions 
(9.3) earlier could be obtained only from the Lorenz 
conversions. 

Equations (9.1-9.3), which present the laws of induction, 
do not give information about how arose fields in initial 
fixed IRF. They describe only laws governing the 
propagation and conversion fields on in the case of motion 
with respect to the already existing fields. 

Equation (16.3) attest to the fact that in the case of 
relative motion of frame of references, between the fields  
E


 and H


 there is a cross coupling, i.e., motion in the 
fields H



 leads to the appearance field on E


 and vice 
versa. From these equations escape the additional 
consequences, which were for the first time examined in 

the article [5]. The electric field 
2

gE
rπε

=  beyond the 

limits of the charged long rod, where g  is a linear charge, 

diminishes according to the law 1
r

. 

If we in parallel to the axis of rod in the field E  begin 
to move with the speed  v∆  another IRF, then in it will 
appear the additional magnetic field H E vε∆ = ∆ . If we 
now with respect to already moving IRF begin to move 
third frame of reference with the speed v∆ , then already 
due to the motion in the field H∆  will appear additive to 

the electric field ( )2E E vµε∆ = ∆ . This process can be 
continued and further, as a result of which can be obtained 
the number, which gives the value of the electric field 

( )vE r′  in moving IRF with reaching of the speed v n v= ∆ , 
when 0v∆ → , and n →∞ .  In the final analysis in 
moving IRF the value of dynamic electric field will prove 
to be more than in the initial and to be determined by the 
equation:  

 ( ), .
2

vgch vcE r v Ech
r cπε

⊥
⊥

⊥′ = =  

If speech goes about the electric field of the single charge 
e , then its electric field will be determined by the 
equation: 

 ( ) 2, ,
4

vech
cE r v
rπε

⊥

⊥′ =  

where v⊥ is normal component of charge rate to the vector, 
which connects the moving charge and observation point. 
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Expression for the scalar potential, created by the 
moving charge, for this case will be written down as 
follows: 

 ( , ) ( )
4

vech vcr v r ch
r c

ϕ ϕ
πε

⊥
⊥

⊥′ = =  (9.4) 

where ( )rϕ is scalar potential of fixed charge. The 
potential ( , )r vϕ ⊥′  can be named scalar-vector, since it 
depends not only on the absolute value of charge, but also 
on speed and direction of its motion with respect to the 
observation point. Maximum value this potential has in 
the direction normal to the motion of charge itself. 
Moreover, if charge rate changes, which is connected with 
its acceleration, then can be calculated the electric fields, 
induced by the accelerated charge. 

During the motion in the magnetic field, using the 
already examined method, we obtain: 

 ( ) .
vH v Hch
c
⊥

⊥′ =  

where of v⊥ - speed normal to the direction of the 
magnetic field. 
If we apply the obtained results to the electromagnetic 
wave and to designate components fields on parallel 
speeds IRF as E↑ , H↑ , and E⊥ , H⊥ as components 
normal to it, then conversions fields on they will be 
written down: 

 

0

0

,

,

,
1 ,

E E
Zv vE E ch v H sh

c v c
H H

v vH H ch v E sh
c vZ c

↑ ↑

⊥ ⊥ ⊥

↑ ↑

⊥ ⊥ ⊥

′ =

 ′ = + × 

′ =

 ′ = − × 

 

  



 

  



 (9.5) 

where 0
0

0
Z

µ
ε

=  is impedance of free space, 
0 0

1c
µ ε

=  

is speed of light. 
Conversions fields on (9.5) they were for the first time 

obtained in the article [5]. 

10. Phase Aberration and the Transverse 
Doppler Effect 

Using Eqs. (9.5) it is possible to explain the 
phenomenon of phase aberration, which did not have 
within the framework existing classical electrodynamics 
of explanations. We will consider that there are 
components of the plane wave zH , xE , which is 
extended in the direction y , and primed system moves in 
the direction of the axis x  with the speed xv . Then 
components fields will be written down: 
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Thus, is a heterogeneous wave, which has in the 
direction of propagation the component vE′ . 

Let us write down the summary field E′  in moving IRF 

 ( ) ( )
1

22 2 .x
x y x

v
E E E E ch

c
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 (10.1) 

If the vector H ′


 is as before orthogonal the axis y , then 

the vector E′


 is now inclined toward it to the angle α , 
determined by the equation: 

 .v vsh
c c

α ≅ ≅  (10.2) 
This is phase aberration. Specifically, to this angle to be 

necessary to incline telescope in the direction of the 
motion of the Earth around the sun in order to observe 
stars, which are located in the zenith. 

The Poynting vector is now also directed no longer 
along the axis y , but being located in the plane xy , it is 
inclined toward the axis  y  to the angle, determined by 
Eqs. (10.2). However, the relation of the absolute values 
of the vectors of E′



 and H ′


 in both systems they 
remained identical. However, the absolute value of 
Poynting vector increased. Thus, even transverse motion 
of inertial system with respect to the direction of 
propagation of wave increases its energy in the moving 
system. This phenomenon is understandable from a 
physical point of view. It is possible to give an example 
with the rain drops. When they fall vertically, then is 
energy in them one. But in the inertial system, which is 
moved normal to the vector of their of speed, to this speed 
the velocity vector of inertial system is added. In this case 
the absolute value of the speed of drops in the inertial 
system will be equal to square root of the sum of the 
squares of the speeds indicated. The same result gives to 
us Eq. (10.1). 

Such waves have in the direction of its propagation 
additional of the vector of electrical or magnetic field, and 
in this they are similar to E  and H of the waves, which 
are extended in the waveguides. In this case appears the 
uncommon wave, whose phase front is inclined toward the 
Poynting vector to the angle, determined by Eq. (10.2). In 
fact obtained wave is the superposition of plane wave with 

the phase speed 1c
µε

=  and additional wave of plane 

wave with the infinite phase speed orthogonal to the 
direction of propagation. 

The transverse Doppler effect, who long ago is 
discussed sufficiently, until now, did not find its confident 
experimental confirmation. For observing the star from 
moving IRF it is necessary to incline telescope on the 
motion of motion to the angle, determined by Eq. (10.2). 
But in this case the star, observed with the aid of the 
telescope in the zenith, will be in actuality located several 
behind the visible position with respect to the direction of 
motion. Its angular displacement from the visible position 
in this case will be determined by Eq. (10.2). But this 
means that this star with respect to the observer has radial 
spid, determined by the equation  

 sin .rv v α=  
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Since for the low values of the angles sinα α≅ , and 
v
c

α = , Doppler frequency shift will compose 

 
2

0 2 .d
v
c

ω ω⊥ =  (10.3) 

This result numerically coincides with results SR, but it 
is principally characterized by of results. It is considered 
SR that the transverse Doppler effect, determined by Eq. 
(10.3), there is in reality, while in this case this only 
apparent effect. If we compare the results of conversions 
fields on (10.5) with conversions SP, then it is not difficult 
to see that they coincide with an accuracy to the quadratic 
members of the ratio of the velocity of the motion of 
charge to the speed of light. 

Conversion SP, although they were based on the 
postulates, could correctly explain sufficiently accurately 
many physical phenomena, which before this explanation 
did not have. With this circumstance is connected this 
great success of this theory. Conversions (10.4) and (10.5) 
are obtained on the physical basis without the use of 
postulates and they with the high accuracy coincided with 
SP. Difference is the fact that in conversions (10.5) there 
are no limitations on the speed for the material particles, 
and also the fact that the charge is not the invariant of 
speed. The experimental confirmation of the fact indicated 
can serve as the confirmation of correctness of the 
proposed conversions. 

11. The Problem of the Lorentz Force and 
Power Interaction of the current-Carrying 
Systems and Its Solution   

It was already said, that Maxwell equations do not 
include information about power interaction of the current 
carrying systems. In the classical electrodynamics for 
calculating such an interaction it is necessary to calculate 
magnetic field in the assigned region of space, and then, 
using a Lorentz force, to find the forces, which act on the 
moving charges. Obscure a question about that remains 
with this approach, to what are applied the reacting forces 
with respect to those forces, which act on the moving 
charges. 

The concept of magnetic field arose to a considerable 
degree because of the observations of power interaction of 
the current carrying and magnetized systems. Experience 
with the iron shavings, which are erected near the magnet 
poles or around the annular turn with the current into the 
clear geometric figures, is especially significant. These 
figures served as occasion for the introduction of this 
concept as the lines of force of magnetic field. In 
accordance with third Newton law with any power 
interaction there is always a equality of effective forces 
and opposition, and also always there are those elements 
of the system, to which these forces are applied. A large 
drawback in the concept of magnetic field is the fact that it 
does not give answer to that, counteracting forces are 
concretely applied to what, since. magnetic field comes 
out as the independent substance, with which occurs 
interaction of the moving charges. 

Is experimentally known that the forces of interaction in 
the current carrying systems are applied to those 

conductors, whose moving charges create magnetic field.  
However, in the existing concept of power interaction of 
such systems the positively charged lattice, to which are 
applied the forces, does not participate in the formation of 
the forces of interaction.  

Let us examine this question on the basis of the concept 
of scalar- vector potential. We will consider that the 
scalar- vector potential of single charge is determined by 
Eq. (9.4), and that the electric fields, created by this 
potential, act on all surrounding charges, including to the 
charges positively charged lattices. 

Let us examine from these positions power interaction 
between two parallel conductors (Figure 6), along which 
flow the currents. We will consider that 1g + , 2g +  and 

1g − , 2g −  present the respectively fixed and moving 
linear charges. 

 
Figure 6. Schematic of power interaction of the current carrying wires of 
two-wire circuit taking into account the positively charged lattice 

The linear charges 1g + , 2g +  present the positively 
charged lattice in the lower and upper conductors. We will 
also consider that both conductors prior to the start of 
charges are electrically neutral. This means that in the 
conductors are two systems of the mutually inserted 
opposite charges with the linear density  1g + , 1g −  and 

2g + , 2g − , which neutralize each other.  In Figure 6 these 
systems for larger convenience in the examination of the 
forces of interaction are moved apart along the axis z . 
Subsystems with the negative charge (electrons) can move 
with the speeds 1v , 2v . The force of interaction between 
the lower and upper conductors we will search for as the 
sum of four forces, whose designation is understandable 
from the figure. The repulsive forces 1F , 2F  we will take 
with the minus sign, while the attracting force  3F , 4F  we 
will take with the plus sign. 

For the single section of the two-wire circuit of force, 
acting between the separate subsystems, will be written 
down 
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Adding all force components, we will obtain the 
amount of the composite linear 
force 

 1 2 1 2 1 2 1 .
2
g g v v v vF ch ch ch

r c c cπεΣ
− = + − − 

 
 (11.2) 

In this expression as 1g  and 2g  are undertaken the 
absolute values of the linear charges, and the signs of 
forces are taken into account in the bracketed expression.   
For the case v c  let us take only two first members of 

expansion in the series vch
c

, i.e., we will consider that 

2

2
11
2

v vch
c c
≅ + .  From Eq. (11.2) we obtain 

 1 1 2 2 1 2
1 2 22 2

g v g v I IF
c r c rπε πε

Σ = =  (11.3) 

where as 1g  and 2g  are undertaken the absolute values of 
the linear charges, and 1v  and 2v  take with its signs. 

 Since the magnetic field of straight wire, along which 
flows the current I , we determine by the equation  

 
2

IH
rπ

= , 

from Eq. (11.3) we obtain 

 1 2 1 2
1 2 12 2 ,

2
I I H IF I H

c r c
µ

πε ε
Σ = = =  

where 1H  is the magnetic field, created by lower 
conductor in the location of upper conductor. 

It is analogous 

 1 1 2F I HµΣ = , 

where 2H  is the magnetic field, created by upper 
conductor in the region of the arrangement of lower 
conductor. 

These equations coincide with the results, obtained on 
the basis of the concept of magnetic field and Lorentz 
forces. 

Equation (11.3) represents the known rule of power 
interaction of the current-carrying systems, but it is 
obtained not on the basis the introduction of 
phenomenological magnetic field, but on the basis of 
completely intelligible physical procedures. In the 
formation of the forces of interaction in this case the 
lattice takes direct part, which is not in the model of 
magnetic field. In the model examined are well visible the 
places of application of force. The obtained equations 
coincide with the results, obtained on the basis of the 
concept of magnetic field and by the axiomatically 
introduced Lorentz force.  In this case is undertaken only 

first member of expansion in the series vch
c

. For the 

speeds v c  should be taken all terms of expansion. If we 
consider this circumstance, then the connection between 
the forces of interaction and the charge rates proves to be 
nonlinear. This, in particular it leads to the fact that the 
law of power interaction of the current-carrying systems is 
asymmetric. With the identical values of currents, but with 

their different directions, the attracting forces and 
repulsion become unequal. Repulsive forces prove to be 
greater than attracting force. This difference is small and 
is determined by the expression  

 
2

1 2
2 22 2

I IvF
c cπε ε

∆ = , 

but with the speeds of the charge carriers of close ones to 
the speed of light it can prove to be completely perceptible. 

Let us remove the lattice of upper conductor, after 
leaving only free electronic flux. In this case will 
disappear the forces of 1F , 3F , and this will indicate 
interaction of lower conductor with the flow of the free 
electrons, which move with the speed 2v  on the spot of 
the arrangement of upper conductor.  In this case the value 
of the force of interaction is defined as: 

 1 2 2 1 2 .
2
g g v v vF ch ch

r c cπεΣ
− = − 

 
 (11.4) 

Lorentz force assumes linear dependence between the 
force, which acts on the charge, which moves in the 
magnetic field, and his speed. However, in the obtained 
equation the dependence of the amount of force from the 
speed of electronic flux will be nonlinear. From Eq. (1.4) 
see that with an increase in 2v  the deviation from the 
linear law increases, and in the case, when 2 1v v , the 
force of interaction are approached zero. This is 
meaningful result.  Specifically, this phenomenon 
observed in their known experiments Thompson and 
Kauffmann, when they noted that with an increase in the 
velocity of electron beam it is more badly slanted by 
magnetic field. They connected the results of their 
observations with an increase in the mass of electron. As 
we see reason here another. 

Let us note still one interesting result. From Eq. (11.3) 
the force of interaction of electronic flux with a straight 
wire to determine according to the following dependence: 
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 (11.5) 

From Eq. (18.5) follows that with the unidirectional 
electron motion in the conductor and in the electronic flux 
the force of interaction with the fulfillment of conditions 

of 1 2
1
2

v v=  is absent. 

Since the speed of the electronic flux usually much 
higher than speed of current carriers in the conductor, the 
second term in the brackets in Eq. (11.5) can be 
disregarded. Then, since 

 1 1
1 22

g vH
c rπε

=  

we will obtain the magnetic field, created by lower 
conductor in the place of the motion of electronic flux: 

 1 2 1 2
2 22 .

2
g g v vF g v H

r c
µ

πεΣ = =  

In this case, the obtained value of force coincides with 
the value of Lorentz force.  
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Taking into account that 

 2 2 2 ,F g E g v HµΣ = =  

it is possible to consider that on the charge, which moves 
in the magnetic field, acts the electric field E , directed 
normal to the direction of the motion of charge. This result 

also with an accuracy to of the quadratic terms  
2

2
v
c

 

completely coincides with the results of the concept of 
magnetic field and is determined Lorentz force. 

As was already said, one of the important 
contradictions to the concept of magnetic field is the fact 
that two parallel beams of the like charges, which are 
moved with the identical speed in one direction, must be 
attracted. In this model there is no this contradiction 
already. If we consider that the charge rates in the upper 
and lower wire will be equal, and lattice is absent, i.e., to 
leave only electronic fluxes, then will remain only the 
repulsive force 2F . 

Thus, the moving electronic flux interacts 
simultaneously both with the moving electrons in the 
lower wire and with its lattice, and the sum of these forces 
of interaction it is called Lorentz force.  

Regularly does appear a question, and does create 
magnetic field most moving electron stream of in the 
absence compensating charges of lattice or positive ions in 
the plasma? The diagram examined shows that the effect 
of power interaction between the current carrying systems 
requires in the required order of the presence of the 
positively charged lattice. Therefore most moving 
electronic flux cannot create that effect, which is created 
during its motion in the positively charged lattice. 

Let us demonstrate still one approach to the problem of 
power interaction of the current carrying systems. The 
statement of facts of the presence of forces between the 
current carrying systems indicates that there is some field 
of the scalar potential, whose gradient ensures the force 
indicated. But that this for the field?  Equation  (11.3) 
gives only the value of force, but he does not speak about 
that, the gradient of what scalar potential ensures these 
forces. We will support with constants the currents 1I , 2I , 
and let us begin to draw together or to move away 
conductors. The work, which in this case will be spent, 
and is that potential, whose gradient gives force. After 
integrating Eq. (11.3) on r , we obtain the value of the 
energy: 

 1 2
2

ln
.

2
I I rW

cπε
=  

This energy, depending on that to move away conductors 
from each other, or to draw together, can be positive or 
negative. When conductors move away, then energy is 
positive, and this means that, supporting current in the 
conductors with constant, generator returns energy. This 
phenomenon is the basis the work of all electric motors. If 
conductors converge, then work accomplish external 
forces, on the source, which supports in them the 
constancy of currents. This phenomenon is the basis the 
work of the mechanical generators of e.m.f. 

Equation  for the energy can be rewritten and thus: 

 1 2
2 1 1 22
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,

2
z z

I I rW I A I A
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= = =  

where 

 1
1 2

ln
2

z
I rA

cπε
=  

is z  component of vector potential, created by lower 
conductor in the location of upper conductor, and 

 2
2 2

ln
2

z
I rA

cπε
=  

is z  component of vector potential, created by upper 
conductor in the location of lower conductor. 

The approach examined demonstrates that large role, 
which the vector potential in questions of power 
interaction of the current-carrying systems and conversion 
of electrical energy into the mechanical plays. This 
approach also clearly indicates that the Lorentz force is a 
consequence of interaction of the current-carrying systems 
with the field of the vector potential, created by other 
current-carrying systems. Important circumstance is the 
fact that the formation of vector potential is obliged to the 
dependence of scalar potential on the speed.  This is clear 
from a physical point of view. The moving charges, in 
connection with the presence of the dependence of their 
scalar potential on the speed, create the scalar field, whose 
gradient gives force. But the creation of any force field 
requires expenditures of energy. These expenditures 
accomplishes generator, creating currents in the 
conductors. In this case in the surrounding space is created 
the special field, which interacts with other moving 
charges according to the special vector rules. In this case 
only scalar product of the charge rate and vector potential 
gives the potential, whose gradient gives the force, which 
acts on the moving charge.  This is the Lorentz force. 

In spite of simplicity and the obviousness of this 
approach, this simple mechanism up to now was not 
finally realized.  For this reason the Lorentz force, until 
now, was introduced in the classical electrodynamics by 
axiomatic way. 

Let us examine the still one case, when the single 
negative charge e  moves with the speed 2v  in parallel to 
the conductor, along which with the speed  1v  move the 
electrons (Figure 15). We will consider that the conductor 
prior to the beginning of electron motion was electrically 
neutral and the linear density of positive ions and 
electrons they were equal. The element of the effective 
force of the moving charge  e  on the element  1q dz−  will 
be determined by the equation: 
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where 1nv , 2nv  are components of the corresponding 
speeds, normal to the radius, which connects the moving 
charge with the grain  1q dz− . The speed of the electron 
motion 2nv  is considerably more than the speed of the 
motion of charges in the conductor  2nv ,  therefore last 
term in the brackets in this equation can be disregarded. 

Since of 1 1 sinnv v α=  and 2 2 sinnv v α= , and also, 
taking into account that  
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we obtain 

 1 1 2
2

0
.

4
q v evdF d

c r
α

πε
=  

 

Figure 7. The diagram of interaction of the moving point charge with the 
conductor, along which flows the current 

The obtained force corresponds to attraction.  The 
element of this force, parallel  0r , will be written down as: 

 1 1 2
2

0
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4
y

q v evdF d
c r

α α
πε

=  (11.6) 

and the element of the force, normal to 0r  will be equal: 
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q v evdF d
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After integrating Eq. (11.6) and taking into account that 
the current, which flows by the lower conductor it is 
determined by the equation  1 1I q v= , let us write down 
the force, which acts on the single moving charge e  from 
the side of the right side of the wire: 
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If we consider interaction, also, with her left side of the 
wire, then the force, which acts in parallel 0r  will be 
doubled, and the forces, which act normal to 0r , they are 
compensated. Thus, the composite force, which acts on 
the charge, which moves in parallel to wire, will be 
written down: 

 2
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.

2
IevF

c rπε
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Since the magnetic field, created by lower conductor 
with the current at the point of the presence of the moving 
charge, is determined by the equation 
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and magnetic permeability is 2
1
c

µ
ε

= , then from Eq. 

(11.8) we obtain 

 2F ev Hµ∑ =  

This force is exactly equal to Lorentz force. 
Let us examine the case, when the charge moves 

between two limitless parallel plates, along which flows 
the specific current I , (Figure 8). This current flows 
along the normal to the plane of figure. In this case the 
charge moves in parallel to the current, which flows in the 
plates. 

 

Figure 8. Diagram of interaction of the moving point charge with the 
currents, which flow along the parallel conducting plates 

Taking into account Eq. (11.9), let us write down the 
element of the force, which acts on the moving charge 
from the side of the current element, which flows normal 
to the element, dy  

 1 2 2
2 .

2
dz dy nv q vdF

c rπε
=  (11.10) 

In this equation  dz  is this thickness of the layer, along 
which the current flows, and n  is electron density. 

Let us rewrite Eq. (11.10), taking into account that 
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= , and also that that sinndF
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α= , 

where dF  is element of force, directed in parallel r , and 
ndF  is element of force, directed normal to 0r : 
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After integrating this eqution, we will obtain the total 
force, which acts on the moving charge from the side of 
one half-plane: 
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Taking into account that the fact that on the charge act 
the forces from the side of four half-planes (two from the 
side of lower plate two from the side of upper), finally we 
obtain: 
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And again eventual result exactly coincided with the 
results of the concept of magnetic field. 

Thus, the results, obtained taking into account the 
introduction of scalar-vector potential and concept of 
magnetic field, completely coincide, if we consider only 
quadratic members of the expansion of hyperbolic cosine 
in series.  In the case of the calculation of the terms of the 
expansion of the higher orders, when the speeds of the 
motion of charges are great, this agreement it will not be 
and the connection between the force and the speed 
becomes nonlinear, and the concept of magnetic field will 
no longer give correct results. 

By the merit of this method of examining interaction 
between the current carrying systems and the charges 
appears the fact that he indicates the concrete places of 
application of force, which act between their elements and 
moving charges, which is not in the concept of magnetic 
field.  

Now it is possible to verify does work the mechanism 
of interaction of the current-carrying systems in the case 
of the long line (Figure 2) examined. The tension of the 
electric field between the planes of line is determined by 
the equation: 
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gE
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=   (11.11) 

g


 is the charge, which falls to the single square of the 
surface of long line. 

The specific current, which falls per unit of the width of 
line, magnetic and electric field in it are connected with 
the equation 
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 (11.12) 

From this equation we obtain 
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 (11.13) 

Since the currents in the planes of line are directed in 
opposite directions, taking into account Eqs. (11.11 - 
11.13), value of the repulsive force, falling to the single 
square surface, let us write down: 
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Thus, the concept of scalar-vector potential and in this 
case gives correct answer. 

Let us examine the still one interesting consequence, 
which escapes from the given examination. If we as the 
planes of long line use an superconductor, then the 
magnetic field on its surface, equal to specific current, can 
be determined from the equation: 

 ,H nevλ=  (11.14) 

where 2
m

ne
λ

µ
=  is depth of penetration of magnetic 

field into the superconductor. 
If we substitute the value of depth of penetration into 

Eq. (11.14), then we will obtain the unexpected result: 

 .nmH v
µ

=  

Occurs that the magnetic field strength completely does 
not depend on the magnitude of the charge of current 
carriers, but it depends on their mass. Thus, the specific 
energy of magnetic field on 

 
2

21
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nmvW Hµ= =  (11.15) 

is equal to specific kinetic the kinetic energy of charges. 
But magnetic field exists not only on its surface, also, in 
the skin-layer. Volume, occupied by magnetic fields, 
incommensurably larger than the volume of this layer. If 
we designate the length of the line, depicted in Fig. 2 as l , 
then the volume of skin-layer in the superconductive 
planes of line will compose 2lbλ . Energy of magnetic 
field on in this volume we determine from the equation: 

 2
, ,HW nmv lbλ λ=  

however, energy of magnetic field on, accumulated 
between the planes of line, it will comprise: 
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If one considers that the depth of penetration of magnetic 
field in the superconductors composes several hundred 
angstroms, then with the macroscopic dimensions of line 
it is possible to consider that the total energy of magnetic 
field on in it they determine by Eq. (11.16). Therefore, the 
formation of magnetic field H  between the planes of line, 
which appear in connection with the motion of charges in 
the skin-layer, it requires the same expenditures of energy, 
as if entire volume of line was filled with the particles, 
which move with the speed v , whose density and mass 
compose respectively n  and m . 

Is obvious that the effective mass of electron in 
comparison with the mass of free electron grows in this 

case into 
2
a
λ

 of times.  This is the consequence of the 

fact that the mechanical electron motion leads not only to 
the accumulation of their kinetic energy in the skin-layer, 
but in the line also occurs accumulation and potential 
energies, whose gradient gives the force, which acts on the 
conducting planes of line. Thus, becomes clear nature of 
such parameters as inductance and the effective mass of 
electron, which in this case depend, in essence, not from 
the mass of free electrons, but from the configuration of 
conductors, on which the electrons move. 

12. Problem of Emission of Electromagnetic 
Wave and the Laws of the Electro-
electrical Induction  

Since field on any process of the propagation of 
electrical and potentials it is always connected with the 
delay, let us introduce the being late scalar- vector 
potential, by considering that the field of this potential is 
extended in this medium with a speed of light [13,14,15]: 
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where rv t
c⊥

 − 
 

 is component of the charge rate of g , 

normal to the vector r  at the moment of the time of 
rt t
c

′ = − , r is distance between the charge and the point, 

at which is determined the field, at the moment of the time 
t . 

Using a equation  ( , )E grad r tϕ= −


, let us find field at 
point 1 (Figure 9). The gradient of the numerical value of 
a radius of the vector of r  is a scalar function of two 
points: the initial point of a radius of vector and its end 
point (in this case this point 1 on the axis of x  and point 0 
at the origin of coordinates). Point 1 is the point of source, 
while point 0 - by observation point.  With the 
determination of gradient from the function, which 
contains a radius depending on the conditions of task it is 
necessary to distinguish two cases:  

1. The point of source is fixed and is considered as the 
function of the position of observation point.  

2. Observation point is fixed and is considered as the 
function of the position of the point of source. 

 

Figure 9. Diagram of shaping of the induced electric field. 

We will consider that the charge  e  accomplishes 
fluctuating motion along the axis y , in the environment 
of point 0, which is observation point, and fixed point 1 is 
the point of source and r  is considered as the function of 
the position of charge. Then we write down the value of 
electric field at point 1: 
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when the amplitude of the fluctuations of charge is 
considerably less than distance to the observation point, it 
is possible to consider a radius vector constant. In this 
case we obtain: 
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where x  is some fixed point on the axis x . 
Taking into account that 
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we obtain from (12.2): 
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 (12.3)  

This is a complete emission law of the moving charge. 
If we take only first term of the expansion, then we will 

obtain from (12.3): 
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where y
xa t
c

 − 
 

 is being late acceleration of charge. This 

equation is wave equation and defines both the amplitude 
and phase responses of the wave of the electric field, 
radiated by the moving charge. 

If we as the direction of emission take the vector, which 
lies at the plane xy , and which constitutes with the axis 
y  the angle α , then Eq. (12.4) takes the form: 
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Equation (12.5) determines the radiation pattern. Since 
in this case there is axial symmetry relative to the axis y , 
it is possible to calculate the complete radiation pattern of 
this emission. This diagram corresponds to the radiation 
pattern of dipole emission. 

Since of 
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 is being late vector 

potential, Eq. (12.5) it is possible to rewrite 

 
2

0

02
0

sin
( , , )

4

1

y

y

H H

xea t
cE x t
c x

x xA t A t
c c

t tc

α
α

πε

µ
ε

 − 
 = −

   ∂ − ∂ −   
   = − = −
∂ ∂

 

Is again obtained complete agreement with the 
equations of the being late vector potential, but vector 
potential is introduced here not by phenomenological 
method, but with the use of a concept of the being late 
scalar-vector potential.   It is necessary to note one 
important circumstance: in Maxwell's equations the 
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electric fields, which present wave, vortex. In this case the 
electric fields bear gradient nature. 

Let us demonstrate the still one possibility, which opens 
Eq. (12.5). It is known that in the electrodynamics there is 
this concept, as the electric dipole and dipole emission. 
Two charges with the opposite signs have the dipole 
moment: 

 p ed=


  (12.6) 

where the vector d


is directed from the negative charge 
toward the positive charge. Therefore current can be 
expressed through the derivative of dipole moment on the 
time 
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Substituting this equation into expression (12.5), we 
obtain the emission law of the being varied dipole. 
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 (12.7) 

This is also known equation [1]. 
In the process of fluctuating the electric dipole are 

created the electric fields of two forms. First, these are the 
electrical induction fields of emission, represented by 
equations (12.4), (12.5) and (12.6), connected with the 
acceleration of charge. In addition to this, around the 
being varied dipole are formed the electric fields of static 
dipole, which change in the time in connection with the 
fact that the distance between the charges it depends on 
time. These fields present the fields of the neighbor zone 
of dipole source.  Specifically, energy of these field on the 
freely being varied dipole and it is expended on the 
emission. However, the summary value of field around 
this dipole at any moment of time defines as superposition 
fields on static dipole field on emissions. 

The laws (12.4), (12.5), (12.7) are the laws of the direct 
action, in which already there is neither magnetic field on 
nor vector potentials. I.e. those structures, by which there 
were the magnetic field and magnetic vector potential, are 
already taken and they no longer were necessary to us. 

Using Eq. (12.5) it is possible to obtain the laws of 
reflection and scattering both for the single charges and, 
for any quantity of them. If any charge or group of charges 
undergo the action of external (strange) electric field, then 
such charges begin to accomplish a forced motion, and 
each of them emits electric fields in accordance with Eq. 
(12.5). The superposition of electrical field on, radiated by 
all charges, it is electrical wave. 

If on the charge acts the electric field of , then the 
acceleration of charge is determined by the equation  

 0 sin .y
ea E t
m

ω′= −  

Taking into account this Eq. (12.5) assumes the form 
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where the coefficient 
2

2
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4
eK
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πε
=  can be named the 

coefficient of scattering (re-emission) single charge in the 
assigned direction, since it determines the ability of charge 
to re-emit the acting on it external electric field. 

The current wave of the displacement accompanies the 
wave of electric field: 
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If charge accomplishes its motion under the action of 
the electric field 0 sinE E tω′ ′= , then bias current in the 
distant zone will be written down as 
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The sum wave, which presents the propagation of 
electrical field on (12.8) and bias currents (12.9), can be 
named electrocurent wave. In this current wave of 
displacement lags behind the wave of electric field to the 

angle equal 
2
π . For the first time this term and definition 

of this wave was used in the articles [13,15]. 
In parallel with the electrical waves it is possible to 

introduce magnetic waves, if we assume that 
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 (12.10) 

 0divH =
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Introduced thus magnetic field is vortex. Comparing 

(12.9) and (12.10) we obtain: 
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Integrating this equation on the coordinate, we find the 
value of the magnetic field 
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 (12.11) 

Thus, Eqs. (12.8), (12.9) and (12.11) can be named the 
laws of electro-electrical induction, since. they give the 
direct coupling between the electric fields, applied to the 
charge, and by fields and by currents induced by this 
charge in its environment. Charge itself comes in the role 
of the transformer, which ensures this reradiation. The 
magnetic field, which can be calculated with the aid of Eq. 
(12.11), is directed normally both toward the electric field 
and toward the direction of propagation, and their relation 
at each point of the space is equal  
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where  Z  is wave drag of free space. 
The combination of electrical and magnetic wave is 

called the electromagnetic wave 
Wave drag determines the active power of losses on the 

single area, located normal to the direction of propagation 
of the wave: 

 2
0

1 .
2 yP ZE=  

Therefore electrocurent wave, crossing this area, 
transfers through it the power, determined by the data by 
equation, which is located in accordance with  Poynting 
theorem about the power flux of electromagnetic wave. 
Therefore, for finding all parameters, which characterize 
wave process, it is sufficient examination only of 
electrocurent wave and knowledge of the wave drag of 
space. In this case it is in no way compulsory to introduce 
this  concept as magnetic field and its vector potential, 
although there is nothing illegal in this. In this setting of 
the equations, obtained for the electrical and magnetic 
field, they completely satisfy Helmholtz theorem. This 
theorem says, that any single-valued and continuous 
vectorial field F



, which turns into zero at infinity, can be 
represented uniquely as the sum of the gradient of a 
certain scalar function of and rotor of a certain vector 
function, whose divergence is equal to zero: 
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0.

F grad rotC

divC

ϕ= +

=
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

, 

Consequently, must exist clear separation fields on to 
the gradient and the vortex. It is evident that in the 
expressions, obtained for those induced field on, this 
separation is located. Electric fields have gradient nature, 
and magnetic is vortex field. 

Thus, the construction of electrodynamics should have 
been begun from the acknowledgement of the dependence 
of scalar potential on the speed. But nature very deeply 
hides its secrets, and in order to come to this simple 
conclusion, it was necessary to pass way by length almost 
into two centuries. The grit, which so harmoniously were 
erected around the magnet poles, in a straight manner 
indicated the presence of some power field on potential 
nature, but to this they did not turn attention; therefore it 
turned out that all examined only tip of the iceberg, whose 
substantial part remained invisible of almost two hundred 
years. 

Taking into account entire aforesaid one should assume 
that at the basis of the overwhelming majority of static and 
dynamic phenomena at the electrodynamics only one 
formula (19.1), which assumes the dependence of the 
scalar potential of charge on the speed, lies.  From this law 
follows and static interaction of charges, and the laws of 
their power interaction in the case of mutual motion, and 
the emission laws and scattering, the phase aberration of 
electromagnetic waves, and the transverse Doppler effect. 
After entire aforesaid it is possible to remove construction 
forests, such as magnetic field and magnetic vector 
potential, which do not allow here already almost two 
hundred years to see the building of electrodynamics in 
entire its sublimity and beauty. 

Let us point out that one of the fundamental equations 
of induction (12.4) could be obtained directly from the 
Ampere law, still long before appeared Maxwell equations. 
The Ampere law, expressed in the vector form, determines 
magnetic field at the point   
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where I  is current in the element dl


, r  is vector, 
directed from dl



to the point , ,x y z . 
It is possible to show that 
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and, besides the fact that 
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 is equal to zero and therefore is final 
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The remarkable property of this expression is that that 
the vector potential depends from the distance to the 

observation point as 1
r

. Specifically, this property makes 

it possible to obtain emission laws. 
Since I gv= , where g  linear charge, from Eq. (12.12) 

we obtain: 
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For the single charge e  this equation takes the form: 

 ,
4H
evA

rπ
=




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 (12.13) 

where a  is acceleration of charge. 
This equation appears as follows for the single charge: 
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If we in Eqs. (12.13) and (12.14) consider that the 
potentials are extended with the final speed and to 
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consider the delay rt
c
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, and assuming, these equations 

will take the form: 
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where the equations (12.15) and (12.16) represent wave 
equations. Let us note that these equations - this solution 
of Maxwell equations, but in this case they are obtained 
directly from the Ampere law, not at all coming running to 
Maxwell equations. To there remains only present the 
question, why electrodynamics in its time is not banal by 
this method? 

13. Scalar-vector Potential and the 
Formation of Electrical Fields on the 
Inductions also of the Magnetic Vector 
Potential  

Earlier has already been indicated that solution of 
problems interactions of the moving charges in the 
classical electrodynamics are solved by the introduction of 
the magnetic field or vector potential, which are fields by 
mediators. To the moving or fixed charge action of force 
can render only electric field. Therefore natural question 
arises, and it is not possible whether to establish the laws 
of direct action, passing fields the mediators, who would 
give answer about the direct interaction of the moving and 
fixed charges. This approach would immediately give 
answer, also, about sources and places of the application 
of force of action and reaction. Let us show that 
application of scalar- vector potential gives the possibility 
to establish the straight laws of the induction, when 
directly the properties of the moving charge without the 
participation of any auxiliary field on they give the 
possibility to calculate the electrical induction fields, 
generated by the moving charge.  

Let us examine the diagram of the propagation of 
current and voltage in the section of the long line, 
represented in Figure 10. Let us assume that in the time  t  
voltage on incoming line, changing according to the linear 
law, reached its nominal value  U . This period of time we 
will call the front of wave (Fig. 10).   In the long line this 
front occupies the section of the long  1z . Let us explain, 
from where are taken those electric fields, which it forces 
the charges, located near the conductors of line, to move 
in the direction opposite to the direction of the motion of 
charges in line itself. In the section  1z  proceeds the 
acceleration of charges from their zero speed (more to the 
right the section  1z ) to the value of speed, determined by 
the equation  

 2 ,eUv
m

=  

where e  and m  are charge and the mass of current 
carriers, U  is voltage drop across the section  1z .  Then 
the dependence of the speed of current carriers on the 
coordinate will take the form: 
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Figure 10. Current wavefront, which is extended in the long line 

Since we accepted the linear dependence of stress from 
the time on incoming line, the equality occurs 
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where zE  is field strength, which accelerates charges in 
the section  1z . Consequently, Eq. (13.1) it is possible to 
rewrite 
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Using for the value of scalar- vector potential Eq. (9.4), 
let us calculate it as the function  z  on a certain distance  
r from the line  
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For the record Eq. (13.2) are used only first two members 
of the expansion of hyperbolic cosine in series. 

Using the eqution  E grad ϕ= − , and differentiating 
Eq. (13.2) on z , we obtain 
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where  zE ′ is the electric field, induced at a distance  
r from the conductor of line. Near E  there is a prime in 
connection with the fact that calculated field it moves 
along the conductor of line with the speed of light. This 
field acts on the charges, which surround line, forcing 
them to move in the opposite direction with respect to 
those charges, which move in the line.  The acceleration of 

charge is determined by the equation  z
z

eEa
m

= . Taking 

this into account from (13.3) we obtain 
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Thus, the charges, accelerated in the section of the line 
1z , induce at a distance r from this section the electric 

field, determined by Eq. (13.4). Direction of this field 
conversely to field, applied to the accelerated charges. 
Thus, is obtained the law of direct action, which indicates 
what electric fields generate around themselves the 
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charges, accelerated in the conductor. This law can be 
called the law of electro-electrical induction, since it, 
passing fields mediators (magnetic field or vector 
potential), gives straight answer to what electric fields the 
moving electric charge generates around itself. This law 
gives also answer about the place of the application of 
force of interaction between the charges.   Specifically, 
this equation we must consider as the fundamental law of 
induction, since specifically, it establishes the reason for 
the appearance of induction electrical field on around the 
moving charge. In what the difference between the 
proposed approach and that previously existing consists. 
Earlier we said that the moving charge generates vector 
potential, and the already changing vector potential 
generates electric field. The equation  (13.4) gives the 
possibility to exclude this intermediate operation and to 
pass directly from the properties of the moving charge to 
the induction fields. Let us show that equation it follows 
from this and the introduced earlier phenomenologically 
vector potential, and, therefore, also magnetic field. Since 
the connection between the vector potential and the 
electric field is determined by Eq. (2.3), equality (13.4) it 
is possible to rewrite  
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and further, integrating by the time, we obtain 
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This equation corresponds to the determination of vector 
potential. It is now evident that the vector potential is the 
direct consequence of the dependence of the scalar 
potential of charge on the speed. The introduction also of 
vector potential and of magnetic field this is the useful 
mathematical device, which makes it possible to simplify 
the solution of number of electrodynamic problems, 
however, one should remember that by fundamentals the 
introduction of these fields on it appears scalar- vector 
potential. 

14. Conclusion 
We passed large way on the examination of the 

problems of those accumulating in the contemporary 
electrodynamics, and, in spite of that which to this science 
is already more than 200 years, these problems remained 
still sufficiently much. For the duration entire of the 
period in the electrodynamics indicated primary attention 
was paid to the electrical and magnetic fields, and this 
concept as magnetic vector potential remained in the 
shadow. The analysis, carried out in this article, showed 
that the magnetic vector potential is one of the most 
important concepts of electrodynamics. But physical 
nature of this potential before the appearance of articles 
[5,13,14,15,18] was not clear. Now we can draw that 
scenario, on which must be developed the electrodynamics, 
if the role of magnetic vector potential, was realized in the 
early stages of its development, and then if at that time 
was possible to understand its physical nature.  

The Ampere law, expressed in the vector form, 
determines magnetic field at the point 
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where  I  is current in the element dl


, r  is vector, 
directed from dl
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to the point , ,x y z . 
It is possible to show that 
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The remarkable property of this expression is that that the 
vector potential depends from the distance to the 

observation point as 1
r

. Specifically, this property makes 

it possible to obtain emission laws. 
Since I gv= , where g is  linear charge, from Eq. 

(12.12) we obtain: 
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For the single charge of this equation takes the form: 

 ,
4H
evA

rπ
=





 

and since 
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the knowledge of vector potential, its time derivatives and 
on the coordinates makes it possible to find electrical and 
magnetic field.  

Equation 

 ( ) ,H Hrot rotA j A=
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obtained in the second paragraph indicates that 

Hrot rotA


is the functional of current density, which for 
the different media is determined by the following 
equations: 

For the free space and the dielectrics: 
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For the case of fulfilling Ohm's law: 
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For the conductors, in which be absent the ohmic losses: 
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 (14.3) 

The equations (14.1-14.3) are wave equations and make 
it possible to obtain the laws of the propagation of vector 
potential in different media. 

Having Eqs. (14.1-14.3) it is possible to immediately 
obtain wave equations for the electrical and magnetic field. 
Differentiate on the time from both parts of these 
equations, we obtain: 
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After taking rotor from both parts of equations (14.1-14.3), 
we obtain wave equations for the magnetic field for the 
media indicated:
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With this approach Maxwell equations no longer are 

necessary to us, since given equations give the possibility 
to examine wave processes in all media indicated. 

But vector potential makes it possible to solve not only 
wave problems. With its aid, as shown in the second 
paragraph, can be solved the problems of power 
interaction of the current-carrying systems, which up to 
now were solved with the aid of the postulate about the 
Lorentz force. 

Moreover, the use of vector potential makes it possible 
to write down the complete law of induction (2.7) without 
any withdrawals and exceptions. And precisely vector 
potential makes electrodynamics with one-piece and 
united science. But physical nature of this potential before 
the appearance of articles [5,13,14,15,18] was not clear.  
This articl only details those ideas, which are expressed in 
these articles. The obtained results change the ideological 
basis of classical electrodynamics, indicating that the 
substantial part of the observed in the electrodynamics 
dynamic phenomena, this by the consequences of this 
dependence. Certainly, the adoption of this concept is 
critical step. But this step is transparent and intelligible 
from a physical point of view. Indeed the main parameter 
of charge are those energy characteristics, which it 
possesses and how it influences the surrounding charges 
not only in the static position, but also during its motion. 
The dependence of scalar potential on the speed leads to 
the fact that in its environments are generated the electric 
fields, to reverse fields, that accelerate charge itself. Such 
dynamic properties of charge allow instead of two 

symmetrical laws of magnetoelectric and electromagnetic 
induction to introduce one law of electro-electrical 
induction, which is the fundamental law of induction. This 
method gives the possibility to directly solve all problems 
of induction and emission, without resorting to  the 
application of such field on mediators as vector potential 
and magnetic field. This approach makes it possible to 
explain the origin of the forces of interaction between the 
current carrying systems.  The introduction of scalar-
vector potential explains a number of the phenomena, 
such as phase aberration and the transverse Doppler effect, 
which earlier in the classical electrodynamics an 
explanation did not have. 

Up to now in the classical electrodynamics existed two 
not connected with each other of division. From one side 
this of Maxwell equation, and from which follow wave 
equations for the electromagnetic field on, while from 
other side this of the equations, which determine power 
interaction of the current carrying systems. For explaining 
this phenomenon the postulate about the Lorentz force 
was introduced. Introduction to the dependence of the 
scalar potential of charge on the speed mutually connects 
these with those not connected divisions, and classical 
electrodynamics takes the form of the ordered united 
science, which has united ideological basis. 

Article shows that together with the fundamental 
parameters  0εε  and 0µµ , which characterize the specific 
forms of energy, accumulated or transferred on the 
material media, namely: electrical and magnetic energy; 
there are two additional fundamental material parameters: 
the kinetic inductance kL  and the kinetic capacity kC . 
With these parameters are connected two forms of energy, 
namely: kinetic and potential, which can be accumulated 
or be transferred in the material media.  If, the parameter, 
were sometimes and used with the description of some 
physical phenomena, for example, in the superconductors, 
then there were no , before the appearance of  article [5], 
known about existence. Use of all four parameters 0εε , 

0µµ , kL  and kC  gives the possibility to solve the 
problems of accumulation and propagation of energy in 
the material media. Earlier it was always considered that 
in the material media the electromagnetic waves are 
propagated and only these waves transfer energy. 
However, this approach is insufficient to account for all 
forms of the energy, accumulated and transferred by fields 
and currents in the material media. In actuality in the 
material media are propagated the magnetoelectrokinetic 
or electromagnetopotential waves, in which the part of the 
energy is accumulated and is transferred purely 
mechanically. Resonances in the material media also bear 
their specific character. In contrast to the electromagnetic 
resonances in the locked planes, when the energy 
exchange occurs between the magnetic and electric fields, 
in the material media there are two forms of resonances. 
This is the electrokinetic resonance, when electric field 
energy is converted into the kinetic energy of charge 
carriers and vice versa, and magnetic fields on material 
media be absent. The second resonance it is possible to 
name magnetopotential resonance, when the potential 
energy, accumulated in the precessional motion of 
magnetic moments, can return into the external space at 
the frequency of precession. 
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Should be focused attention also to the fact that the 
physical interpretation of some mathematical concepts, 
which concern electrodynamic processes, they require the 
specific caution. So it is mathematically very simple of 
two, not depending on the frequency physical quantities, 
to design the mathematical symbol, which will depend on 
frequency. Specifically, this occurred, when the concepts 
of the dispersion of dielectric and magnetic constant were 
introduced. However, it turned out that such concepts as 
the dispersion of these values, physically [neobosnovanny], 
although the parameter ( )ε ω∗  is convenient for the 
mathematical description of the processes, which exist in 
the material media. 

We are the witnesses of the phenomenon, when 
mathematics bore the new physical parameter, which in 
nature there does not exist. And, the most interesting 
consists in the fact that all of physics into existence of this 
parameter believed and many believe to the these rapids. 
The discussion deals with the frequency-dependent 
dielectric constant. This physical parameter in nature there 
does not exist. How did arise this error?  It is known that 
there is a dispersion of electromagnetic waves with their 
passage through the material media. Here all began to 
think that this dispersion was generated by the dispersion 
of dielectric constant. Occurs everything entirely not thus. 
The dispersion of electromagnetic waves is the 
consequence not of the dispersion of dielectric constant, 
but the dispersion of the phase speed of electromagnetic 
waves.  Immediately several parameters independent from 
the frequency form this dispersion. For the plasma the 
dielectric constant of vacuum and the kinetic inductance 
of charge carriers, which present plasma, are them. In the 
dielectrics this process somewhat more complex, because, 
together with the dielectric constant of vacuum and the 
kinetic inductance of bound charges, in this process 
participate the polarization or orientational properties of 
the electric dipoles, existing in the dielectric. 
Consequently, the dispersion of electromagnetic waves, 
which is observed with their propagation in the dielectrics, 
is connected not with the dispersion of the nonexistent 
parameter, which was considered the frequency-dependent 
dielectric constant, but with the dispersion of reactive 
dielectric conductance. 

But if assertion about the presence of dispersion in the 
dielectric and magnetic constant can be to a certain degree 
considered systematic error, then in the electrodynamics 
of continuous media there are errors also of more 
fundamental nature. This is that case, when in conducting 
media at the microscopic level is introduced polarization 
vector similarly, as is done in dielectrics [7]. This is gross 
physical error, since polarization vector in the conducting 
structures at the microscopic level be it cannot, since in 
the conductors the charges are free, and the electric 
dipoles do not can to form. As a result such systematic 
and physical errors unnoticed proved to be the 
circumstance that in the nonmagnetized confined plasma, 
together with the longitudinal Langmuir resonance, it can 
occur and transverse plasma resonance, the frequencies in 

these resonances coinciding, i.e., they are degenerate. But 
this means that is passed the entire scientific and technical 
direction, which has great applied value. 
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