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Abstract 
In the article is described the new physical of phenomenon, which indicates that in the 

superconductors the stationary electric field can exist. This field exists in the surface 

layer of superconductor and it is directed normal to its surface. Since the field indicated 

is the consequence of the kinetic motion of charges in the superconductor, it can be 

named electrokinetic electric field. The value of this field is small, but it are new, 

previously unknown, property of the superconductive state. 

1. Introduction 

The electrodynamics of superconductors does not assume the presence in them of 

stationary electrical fields on, since this would lead to an infinite increase in the speed of 

current carriers. In the article is described earlier not the known physical phenomenon, 

which is assumed the presence of stationary electrical fields on in the superconductors. 

These fields are the consequence of the kinetic motion of charges and therefore they can 

be named kinetic electric fields. The value of this field is small, but it are new, previously 

unknown, property of the superconductive state. 

2. Electrodynamics of Plasmo-Like Media 

By plasma media we will understand such, in which the charges can move without the 

losses.  To such media in the first approximation, can be related the superconductors, free 

electrons or ions in the vacuum. In the media indicated the equation of motion of 

electron takes the form: 

dv
m eE

dt
=
�

�
,                                                  (2.1) 

where m  is mass electron, e  is the electron charge, E
�

is the tension of electric field, v
�

 

is speed of the motion of charge. 

Using an expression for the current density 

,j nev=
� �

                                                       (2.2) 

from equation (2.1) we obtain the current density of the conductivity 

2

L

ne
j E dt

m
= ∫

��
.                                            (2.3) 

In relationship (2.2) and (2.3) the value n  represents electron density. After 

introducing the designation 
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2k

m
L

ne
= ,                                             (2.4) 

we find 

1
L

k

j E dt
L

= ∫
��

.                                      (2.5) 

In this case the value kL  presents the specific kinetic 

inductance of charge carriers [2-6]. Its existence connected 

with the fact that charge, having a mass, possesses inertia 

properties.  

0

1
cos

L

k

j E t
L

ω
ω

= −
��

.                    (2.6) 

For the mathematical description of electrodynamic 

processes the trigonometric functions will be here and 

throughout, instead of the complex quantities, used so that 

would be well visible the phase relationships between the 

vectors, which represent electric fields and current densities. 

From relationship (2.5) and (2.6) is evident that Lj
�

 

presents inductive current, since its phase is late with respect 

to the tension of electric field to the angle 
2

π
. 

During the presence of summed current it is necessary to 

consider bias current 

0 0 0
cos

E
j E t

t
ε

∂ε ε ω ω
∂

= =
�

��

. 

Thus, summary current density will compose [7-9] 

0

1

k

E
j E dt

t L

∂ε
∂∑ = + ∫
�

��

, 

Maxwell's equations for this case take the form: 

0

0

,

1
,

k

H
rot E

t

E
rot H E dt

t L

∂µ
∂

∂ε
∂

= −

= + ∫

�
�

�
� �

                         (2.7) 

where 0ε  and 0µ  are dielectric and magnetic constant of 

vacuum. 

System of equations (2.7) describes the properties of 

superconductors. From it we obtain 

2

0

0 0 2
0

k

H
rot rot H H

Lt

µ∂µ ε
∂

+ + =
�

� �

.                  (2.8) 

For the case fields on, time-independent, equation (2.8) 

passes into the London's equation 

0 0

k

rot rot H H
L

µ
+ =
� �

 , 

where
2

0

L

k
L

λ
µ

= is London's depth of penetration. 

Fields on wave equation in this case it appears as follows 

for the electrical: 

2

0

0 0 2
0

k

E
rot rot E E

Lt

µ∂µ ε
∂

+ + =
�

� �

. 

For constant electrical fields on it is possible to write down 

0 0

k

rot rot E E
L

µ
+ =
� �

. 

Consequently, dc fields penetrate the superconductor in the 

same manner as for magnetic, diminishing exponentially. 

However, the density of current in this case grows according 

to the linear law 

1
L

k

j E dt
L

= ∫
��

. 

This means that stationary electric fields in the 

superconductor it can exist only until current density reaches 

its critical value for this type of superconductor. 

If around the point in question is some static configuration 

of charges, then the tension of electric field will be at the 

particular point determined by the relationship of , where  the 

scalar potential at the assigned point, determined by the 

assigned configuration of charges. If we change the 

arrangement of charges, then this new configuration will 

correspond other values of scalar potential, and, therefore, 

also other values of the tension of electric field. 

In the electrodynamics the fundamental law of induction is 

Faraday law. It is written as follows: 

B
Ф H B

E dl ds ds
t t t

µ∂ ∂ ∂= − = − = −
∂ ∂ ∂∫ ∫ ∫

� �
�� � �

�      (2.9) 

where B Hµ=
� �

is magnetic induction vector, BФ H dsµ= ∫
� �

 

is flow of magnetic induction, and 0µ µµ= ɶ is magnetic 

permeability of medium. It follows from this law that the 

circulation integral of the vector of electric field is equal to a 

change in the flow of magnetic induction through the area, 

which this outline covers.  It is immediately necessary to 

emphasize the circumstance that the law in question presents 

the processes of mutual induction, since. For obtaining the 

circulation integral of the vector E
�

 we take the strange 

magnetic field, formed by strange source.  From relationship 

(2.9) obtain the first Maxwell's equation 



 AASCIT Journal of Physics 2015; 1(1): 53-57  55 

 

B
rot E

t

∂= −
∂

�
�

.                          (2.10) 

Let us immediately point out to the terminological error. 

Faraday law should be called not the law of electromagnetic, 

as is customary in the existing literature, but by the law of 

magnetoelectric induction, since. a change in the magnetic 

fields on it leads to the appearance of electrical fields on, but 

not vice versa. 

Let us assume that in the region of the arrangement of the 

outline of integration there is a certain local vector HA
�

, 

which satisfies the equality 

H BA dl Фµ =∫
��

� , 

where the outline of the integration coincides with the outline 

of integration in relationship (2.9), and the vector of  is 

determined in all sections of this outline, then 

H
A

E
t

µ ∂
= −

∂

�
�

.                   (2.11) 

Introduced thus vector HA
�

 determines the local connection 

between it and by electric field. It is not difficult to show that 

introduced thus vector HA
�

, is connected with the magnetic 

field with the following relationship: 

Hrot A H=
� �

.         (2.12) 

At those points of the space, where 

0Hrot A =
�

, 

magnetic field is absent. 

Thus, we will consider that the vector H
�

 exists by a 

consequence of the presence of the vector HA
�

, but not vice 

versa. 

If there is a straight conductor with the current, then 

around it also there is a field of vector potential, the truth in 

this case 0Hrot A ≠
�

 in the environments of this conductor 

is, therefore, located also the magnetic field, which changes 

with a change of the current in the conductor. The section of 

wire by the length dl , over which flows the current I , 

generates in the distant zone (it is thought that the distance r  

considerably more than the length of section) the vector 

potential 

( )
4

H

Idl
dA r

rπ
=
�

�
. 

Until now, resolution of a question about the appearance of 

electrical fields on in different inertial moving systems (IS) it 

was possible to achieve in two ways. The first - consisted in 

the calculation of the Lorentz force, which acts on the 

moving charges, the alternate path consisted in the 

measurement of a change in the magnetic flux through the 

outline being investigated. Both methods gave identical 

result, and this was incomprehensible [10]. In connection 

with the incomprehension of physical nature of this state of 

affairs they began to consider that the unipolar generator is 

an exception to the rule of flow [10].  Let us examine this 

situation in more detail. 

In order to answer the presented question, should be 

somewhat changed relationship (2.3), after replacing in it 

partial derivative by the complete: 

H
dA

E
dt

µ′ = −
�

�
.                         (2.13) 

Prime near the vector E
�

 means that this field is determined 

in the moving coordinate system, while the vector HA
�

 it is 

determined in the fixed system.  This means that the vector 

potential can have not only local, but also convection 

derivative, i.e., it can change both due to the change in the 

time and due to the motion in the three-dimensional changing 

field of this potential. In this case relationship (2.16) can be 

rewritten as follows: 

( )H
H

A
E v A

t
µ µ∂′ = − − ∇

∂

�
�� �

, 

where v
�

 is speed of the prime system. If vector potential on 

time does not depend, we obtain 

( ),1v H
F e v Aµ′ = − ∇

�� �
. 

This force depends only on the gradients of vector 

potential and charge rate. 

The charge, which moves in the field of the vector 

potential
H

A
�

 with the speed v
�

, possesses potential energy 

[10] 

( )HW e vAµ= −
��

. 

Therefore must exist one additional force, which acts on 

the charge in the moving coordinate system, namely: 

( ),2v HF grad W e grad vAµ′ = − =
�� �

. 

Consequently, the value ( )He vAµ
�

 plays the same role as 

the scalar potentialϕ , whose gradient gives the force, which 

acts on the charge. Consequently, the composite force, which 

acts on the charge, which moves in the field of vector 

potential, can have three components and will be written 

down as  

( ) ( )H
H H

A
F e e v A e grad vA

t
µ µ µ∂′ = − − ∇ +

∂

�
� �� � �

.           (2.14) 

The first of the components of this force acts on the fixed 

charge, when vector potential changes in the time and has 

local time derivative. Second component is connected with 
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the motion of charge in the three-dimensional changing field 

of this potential. Entirely different nature in force, which is 

determined by last term of relationship (2.14). It is connected 

with the fact that the charge, which moves in the field of 

vector potential, it possesses potential energy, whose gradient 

gives force. From relationship (2.14) follows 

( ) ( )H
H H

A
E v A grad vA

t
µ µ µ∂′ = − − ∇ +

∂

�
� �� � �

.               (2.15) 

This is a complete law of mutual induction. It defines all 

electric fields, which can appear at the assigned point of 

space, this point can be both the fixed and that moving. This 

united law includes and Faraday law and that part of the 

Lorentz force, which is connected with the motion of charge 

in the magnetic field, and without any exceptions gives 

answer to all questions, which are concerned mutual 

magnetoelectric induction. It is significant, that, if we take 

rotor from both parts of equality (2.15), attempting to obtain 

the first Maxwell's equation, then it will be immediately lost 

the essential part of the information, since rotor from the 

gradient is identically equal to zero. 

If we isolate those forces, which are connected with the 

motion of charge in the three-dimensional changing field of 

vector potential, and to consider that 

( ) ( )H H Hgrad vA v A v rot Aµ µ µ  − ∇ = × 
� � �� � �

, 

that from (2.14) we will obtain 

v HF e v rot Aµ  ′ = × 
�� �

                        (2.16) 

and, taking into account (2.12), let us write down 

of vF e v Hµ  ′ = × 
� ��

,                          (2.17) 

or  

vE v Hµ  ′ = × 
� ��

,                               (2.18) 

and it is final 

H
v

A
F eE eE e e v H

t
µ∂
 ′ ′= + = − + × ∂

�
� � � ��

.          (2.19) 

Can seem that relationship (2.19) presents Lorentz force, 

however, this not thus. In this relationship the field E
�

 and 

the field vE′
�

 are induction. The first equation is connected 

with a change of the vector potential with time, the second is 

obliged to the motion of charge in the three-dimensional 

changing field of this potential.  In order to obtain the total 

force, which acts on the charge, necessary to the right side of 

relationship (2.19) to add the term e grad ϕ−  

F e grad eE e v Hϕ µ∑
 ′ = − + + × 

� � ��
, 

whereϕ  is scalar potential at the observation point. In this 

case relationship (2.15) can be rewritten as follows: 

( ) ( )H
H H

A
E v A grad vA grad

t
µ µ µ ϕ∂′ = − − ∇ + −

∂

�
� �� � �

,    (2.20) 

or, after writing down the first two members of the right side 

of relationship (2.20) as the derivative of vector potential on 

the time, and also, after introducing under the sign of 

gradient two last terms, we will obtain 

( )( )H
dA

E grad vA
dt

µ µ ϕ′ = − + −
�

�� �
.                (2.21) 

If both parts of relationship (2.20) are multiplied by the 

magnitude of the charge, then will come out the total force, 

which acts on the charge. From Lorentz force it will differ in 

terms of the force H
A

e
t

µ ∂
−

∂

�

. From relationship (2.21) it is 

evident that the value ( )vAµ ϕ−
��

  plays the role of the 

generalized scalar potential. 

The Maxwell's second equation in the terms of vector 

potential can be written down as follows: 

( )H Hrot rotA j A=
� ��

                            (2.22) 

where ( )Hj A
��

 is the current density, which presents functional 

from the vector potential.  

In the superconductor the current density is determined by 

the relationship 

( )H H

k

j A A
L

µ= −
� ��

,                         (2.23) 

where
2k

m
L

ne
=  is kinetic inductance of charges.  

The dependence of current density on the coordinate in the 

superconductor is determined by relationship [1] 

0( ) L

z

j z j e
λ

−
=

� �                         (2. 24) 

where z  is coordinate, directed into the depths of the 

superconductor, 0j
�

 is current density on the surface of 

superconductor. 

Using relationship (2.2) we obtain the dependence of the 

electron velocity in the superconductor on the coordinate  

0( ) L

z

v z v e
λ

−
=� �                              (2.25) 

Using relationships (2.23-2.25), from relationship (2.21) 

we obtain the value of kinetic electric field with the presence 

of the steady currents 

( )
2

2

0 02 L

z

k LE grad vA ne v e
λµ µ λ

−
= − 〈 〉 = −

��           (2.26) 
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Consequently, when, in the surface layer, the 

superconductor of steady currents is present, in this layer 

exists the electric field, normal to the surface, dependence 

which from coordinate is determined by relationship (2.26). 

This field can be named electrokinetic, since it is generated 

by the kinetic electron motion. 

The magnetic field on its surface of superconductor, equal 

to specific current, can be determined from the relationship 

0 0 LH nev λ=  

Then relationship (2.29) can be rewritten 

22

0 02
L

z

k

L

H
E e

ne

λµ
λ

−
= − .                        (2.27) 

Let us produce the estimate of the magnitude of this field 

for niobium, assuming 
28 35.4 10 1/n m= ⋅ . With the zero of 

temperatures the critical magnetic field of niobium is equal 
51.5 10 /A m⋅ . Substituting these values in relationship 

(2.27), we obtain the value of electrokinetic field near the 

surface 
23 10 /kE V m⋅≃ , when currents in superconductive 

niobium are close to the critical. 

3. Conclusion 

In the article is described the new physical of 

phenomenon, which indicates that in the superconductors the 

stationary electric field can exist. This field exists in the 

surface layer of superconductor and it is directed normal to 

its surface. Since the field indicated is the consequence of the 

kinetic motion of charges in the superconductor, it can be 

named electrokinetic electric field. 
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