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Abstract 
Electrodynamics is developed already more than 200 years, in it still remained sufficiently 

many problems. For the duration entire of the period in the electrodynamics indicated 

primary attention was paid to the electrical and magnetic fields, and this concept as 

magnetic vector potential remained in the shadow. The carried out analysis showed that the 

magnetic vector potential is one of the most important concepts of classical 

electrodynamics, and magnetic field is only a consequence of this potential. But physical 

nature of this potential was not clear. The meaningful result of work is that which in them 

within the framework of Galilei conversions is shown that the scalar potential of charge 

depends on its relative speed, and this fact found its experimental confirmation. The 

obtained results change the ideological basis of classical electrodynamics, indicating that 

the substantial part of the observed in the electrodynamics dynamic phenomena, this by the 

consequences of this dependence. Certainly, the adoption of this concept is critical step. 

Indeed the main parameter of charge are those energy characteristics, which it possesses 

and how it influences the surrounding charges not only in the static position, but also 

during its motion. the dependence of scalar potential on the speed leads to the fact that in 

its environments are generated the electric fields, to reverse fields, that accelerate charge 

itself. Such dynamic properties of charge allow instead of two symmetrical laws of 

magneto electric and electromagnetic induction to introduce one law of electro-electrical 

induction, which is the fundamental law of induction. This method gives the possibility to 

directly solve all problems of induction and emission, without resorting to the application 

of such pour on mediators as vector potential and magnetic field. This approach makes it 

possible to explain the origin of the forces of interaction between the current carrying 

systems. Up to now in the classical electrodynamics existed two not connected with each 

other of division. From one side this of Maxwell equation, and from which follow wave 

equations for the electromagnetic pour on, while from other side this of the relationships, 

which determine power interaction of the current carrying systems. For explaining this 

phenomenon the postulate about the Lorentz force was introduced. Introduction to the 

dependence of the scalar potential of charge on the speed mutually connects these with 

those not connected divisions, and classical electrodynamics takes the form of the ordered 

united science, which has united ideological basis. 

1. Introduction 

The basis of contemporary electrodynamics, were placed by Ampere [1], which 

introduced the concept of magnetic field. This made possible to obtain the mathematical 

relationships, which describe power interaction of the current carrying systems. But 
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this task was solved only at the phenomenological level, 

since. The physical causes for such an interaction were not 

found. The following major step in the description of 

electrodynamic processes was conducted by Faraday [2], 

who introduced the law of electromagnetic induction and by 

Maxwell, which introduced the concept of bias current [ 3]. 

This made possible to predict and to describe wave processes 

in the material media. The meaningful result of the work of 

Maxwell was also the introduction of the concept of the 

vector potential of magnetic field, which made it possible to 

write down the generalized scalar potential, which unites the 

static and dynamic laws of electrodynamics. Heaviside's 

merit is the fact that he wrote down Maxwell's equations in 

the terms of vector analysis. Equations recorded by 

Heaviside and it is customary to assume Maxwell equations. 

However, Maxwell did not introduce the concept of the 

vector potential of electric field, which makes it possible to 

symmetrize the equations of electrodynamics, after writing 

down them in the plural form. The experimental detection of 

electromagnetic waves is the most great merit of Hertz [4]. 

He succeeded in creating the first in the world high-

frequency generator and the antenna, capable of emitting 

electromagnetic waves. 

Lorenz is already later and Poincare introduced 

experimental postulate about the Lorentz force who up to 

now is used for enumerating the magnetic forces, which act 

on the charges, which move in the magnetic field. But no one 

of higher than enumerated scientists could explain physical 

nature of the vector potential of magnetic field and prove that 

the scalar potential of charge and its dependence on the speed 

is the basis of all static and dynamic laws of electrodynamics. 

This was made in the work of the author [5-16]. Introduction 

to the dependence of the scalar potential of charge from the 

speed not only made it possible to explain nature of the 

emission of electromagnetic waves, or physics of power 

interaction of the current carrying systems, but also 

combined two not connected, until now, parts of the 

electrodynamics, which present wave and power processes. 

To the examination of the role of the scalar potential of 

charge and its dependence on the speed to the formulating of 

the laws of electrodynamics is dedicated this article. 

The laws of classical electrodynamics they reflect 

experimental facts they are phenomenological. 

Unfortunately, contemporary classical electrodynamics is not 

deprived of the contradictions, which did not up to now 

obtain their explanation. 

The fundamental equations of contemporary classical 

electrodynamics are the Maxwell equation. They are written 

as follows for the vacuum: 

 
B

rot E
t

∂= −
∂

�
�

, (1.1) 

 
D

rot H
t

∂=
∂

�
�

, (1.2) 

 0div D =
�

, (1.3) 

 0div B =
�

, (1.4) 

where E
�

, H
�

are tension of electrical and magnetic field, 

0D Eε=
� �

, 
0B Hµ=

� �
are electrical and magnetic induction, 

0
µ ,

0
ε are magnetic and dielectric constant of vacuum. From 

Maxwell equations follow the wave equations 
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t
µ ε ∂∇ =

∂

�
�

. (1.6) 

These equations show that in the vacuum can be extended 

the plane electromagnetic waves, the velocity of propagation 

of which is equal to the speed of light 

 
0 0

1
c

µ ε
= . (1.7) 

For the material media the Maxwell equations take the 

following form: 

 
0

H B
rot E

t t
µµ ∂ ∂= − = −

∂ ∂

� �
�

ɶ , (1.8) 

 
0

E D
rot H nev nev

t t
εε ∂ ∂= + = +

∂ ∂

� �
� � �

ɶ , (1.9) 

 div D ne=
�

, (1.10) 

 0div B =
�

, (1.11) 

where µɶ , εɶ  are the relative magnetic and dielectric constants 

of the medium and n , e  and v
�

 are density, value and charge 

rate. 

The equations (1.1 - 1.11) are written in the assigned 

inertial reference frame (IRF) and in them there are no rules 

of passage of one IRF to another. These equations assume 

that the properties of charge do not depend on their speed. 

In Maxwell equations are not contained indication that is 

the reason for power interaction of the current-carrying 

systems, therefore to be introduced the experimental 

postulate about the force, which acts on the moving charge in 

the magnetic field 

 0LF e v Hµ = × 

� ��
. (1.12) 

This force is called the Lorentz force. However in this 

axiomatics is an essential deficiency. If force acts on the 

moving charge, then in accordance with third Newton law 

must occur and reacting force. In this case the magnetic field 

is independent substance, comes out in the role of the 
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mediator between the moving charges. Consequently, we do 

not have law of direct action, which would give immediately 

answer to the presented question, passing the procedure 

examined. I.e. we cannot give answer to the question, where 

are located the forces, the compensating action of magnetic 

field to the charge. 

The equation (1.12) from the physical point sight causes 

bewilderment. The forces, which act on the body in the 

absence of losses, must be connected either with its 

acceleration, if it accomplishes forward motion, or with the 

centrifugal forces, if body accomplishes rotary motion. 

Finally, static forces appear when there is the gradient of 

the scalar potential of potential field, in which is located the 

body. But in Eq. (1.12) there are no such forces. Usual 

rectilinear motion causes the force, which is normal to the 

direction motion. In the classical mechanics the forces of 

this type are unknown. 

Is certain, magnetic field is one of the important concepts 

of contemporary electrodynamics. Its concept consists in the 

fact that around any moving charge appears the magnetic 

field (Ampere law), whose circulation is determined by 

equation 

 Hdl I=∫
��

� , (1.13) 

where I is conduction current. Equation (1.9) is the 

consequence of Eq. (1.13), if we to the conduction current 

add bias current. 

Let us especially note that the introduction of the concept 

of magnetic field does not be founded upon any physical 

basis, but it is the statement of the collection of some 

experimental facts. Using this concept, it is possible with the 

aid of the specific mathematical procedures to obtain correct 

answer with the solution of practical problems. But, 

unfortunately, there is a number of the physical questions, 

during solution of which within the framework the concepts 

of magnetic field, are obtained paradoxical results. Here one 

of them. 

Using Eqs. (1.12) and (1.13) not difficult to show that with 

the unidirectional parallel motion of two like charges, or 

flows of charges, between them must appear the additional 

attraction. However, if we pass into the inertial system, 

which moves together with the charges, then there magnetic 

field is absent, and there is no additional attraction. This 

paradox does not have an explanation. 

Of force with power interaction of material structures, 

along which flows the current, are applied not only to the 

moving charges, but to the lattice, but in the concept of 

magnetic field to this question there is no answer also, since. 

In Eqs. (1.1-1.13) the presence of lattice is not considered. At 

the same time, when current flows through the plasma, 

occurs its compression. This phenomenon is called pinch 

effect. In this case forces of compression act not only on the 

moving electrons, but also on the positively charged ions. 

And, again, the concept of magnetic field cannot explain this 

fact, since in this concept there are no forces, which can act 

on the ions of plasma. 

As the fundamental law of induction in the 

electrodynamics is considered Faraday law, consequence of 

whom is the Maxwell first equation. However, here are 

problems. It is considered until now that the unipolar 

generator is an exception to the rule of flow, consequently 

Faraday law is not complete. 

Let us give one additional statement of the monograph 

[17]: “The observations of Faraday led to the discovery of 

new law about the connection of electrical and magnetic field 

on: in the field, where magnetic field changes in the course of 

time, is generated electric field”. But from this law also there 

is an exception. Actually, the magnetic fields be absent out of 

the long solenoid; however, electric fields are generated with 

a change of the current in this solenoid around the solenoid. 

In the classical electrodynamics does not find its explanation 

this well known physical phenomenon, as phase aberration of 

light. 

From entire aforesaid it is possible to conclude that in the 

classical electrodynamics there is number of the problems, 

which still await their solution. 

2. Laws of the Magnetoelectric 

Induction 

The primary task of induction is the presence of laws 

governing the appearance of electrical field on, since only 

electric fields exert power influences on the charge. 

Faraday law is written as follows: 

 BФ H B
E dl ds ds

t t t
µ∂ ∂ ∂= − = − = −

∂ ∂ ∂∫ ∫ ∫
� �

�� � �

� , (2.1) 

where B Hµ=
� �

is magnetic induction vector, 
B

Ф H dsµ= ∫
� �

 

is flow of magnetic induction, and 
0

µ µµ= ɶ is magnetic 

permeability of medium. It follows from this law that the 

circulation integral of the vector of electric field is equal to a 

change in the flow of magnetic induction through the area, 

which this outline covers. From Eq.(2.1) obtain the Maxwell 

first equation 

 
B

rot E
t

∂= −
∂

�
�

. (2.2) 

Let us immediately point out to the terminological error. 

Faraday law should be called not the law of electromagnetic, 

as is customary in the existing literature, but by the law of 

magneto electric induction, since. a change in the magnetic 

field on it leads to the appearance of electrical field on, but 

not vice versa. 

Let us introduce the vector potential of the magnetic field

HA
�

, which satisfies the equality 

H B
A dl Фµ =∫
��

� , 

where the outline of the integration coincides with the outline 

of integration in Eq. (2.1), and the vector of is determined in 
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all sections of this outline, then then 

 H
A

E
t

µ ∂
= −

∂

�
�

. (2.3) 

Between the vector potential and the electric field there is 

a local connection. Vector potential is connected with the 

magnetic field with the following equation: 

 
Hrot A H=
� �

. (2.4) 

During the motion in the three-dimensional changing field 

of vector potential the electric fields find, using total 

derivative 

 H
dA

E
dt

µ′ = −
�

�
. (2.5) 

Prime near the vector E
�

 means that we determine this 

field in the moving coordinate system. This means that the 

vector potential has not only local, but also convection 

derivative. In this case Eq. (2.5) can be rewritten as follows: 

( )H
H

A
E v A

t
µ µ∂′ = − − ∇

∂

�
�� �

, 

where v
�

 is speed of system. If vector potential on time does 

not depend, the force acts on the charge 

( ),1v HF e v Aµ′ = − ∇
�� �

 . 

This force depends only on the gradients of vector 

potential and charge rate. 

The charge, which moves in the field of the vector 

potential 
HA
�

 with the speed v
�

, possesses potential energy 

( )HW e vAµ= −
��

. 

Therefore must exist one additional force, which acts on 

the charge in the moving coordinate system, namely: 

( ),2v HF grad W e grad vAµ′ = − =
�� �

. 

The value ( )He vAµ
�

 plays the same role, as the scalar 

potential of the charge, whose gradient determines the force, 

which acts on the moving charge. Consequently, the 

composite force, which acts on the charge, which moves in 

the field of vector potential, can have three components and 

will be written down as 

 ( ) ( )H
H H

A
F e e v A e grad vA

t
µ µ µ∂′ = − − ∇ +

∂

�
� �� � �

. (2.6) 

The first of the components of this force acts on the fixed 

charge, when vector potential changes in the time and has 

local time derivative. Second component is connected with 

the motion of charge in the three-dimensional changing field 

of this potential. Entirely different nature in force, which is 

determined by last term Eq. (2.6). It is connected with the 

fact that the charge, which moves in the field of vector 

potential, it possesses potential energy, whose gradient gives 

force. From Eq. (2.6) follows 

 ( ) ( )H
H H

A
E v A grad vA

t
µ µ µ∂′ = − − ∇ +

∂

�
� �� � �

. (2.7) 

This is a complete law of mutual induction. It defines all 

electric fields, which can appear at the assigned point of 

space, this point can be both the fixed and that moving. This 

united law includes and Faraday law and that part of the 

Lorentz force, which is connected with the motion of charge 

in the magnetic field, and without any exceptions gives 

answer to all questions, which are concerned mutual 

magnetoelectric induction. It is significant, that, if we take 

rotor from both parts of equality (2.7), attempting to obtain 

the Maxwell first equation, then it will be immediately lost 

the essential part of the information, since. rotor from the 

gradient is identically equal to zero. 

If we isolate those forces, which are connected with the 

motion of charge in the three-dimensional changing field of 

vector potential, and to consider that 

( ) ( )H H Hgrad vA v A v rot Aµ µ µ  − ∇ = × 

� � �� � �
, 

that from Eq. (2.6) we will obtain 

 v HF e v rot Aµ  ′ = × 

�� �
, (2.8) 

and, taking into account (2.4), let us write down 

 vF e v Hµ  ′ = × 

� ��
 (2.9) 

or 

 vE v Hµ  ′ = × 

� ��
, (2.10) 

and it is final 

 H
v

A
F eE eE e e v H

t
µ∂
 ′ ′= + = − + × ∂

�
� � � ��

. (2.11) 

Can seem that Eq. (2.11) presents Lorentz force, however, 

this not thus. In this equation, in contrast to the Lorentz force 

the field E
�

 is induction. In order to obtain the total force, 

which acts on the charge, necessary to the right side Eq. 

(2.11) to add the term e grad ϕ−  

F e grad eE e v Hϕ µ∑
 ′ = − + + × 

� � ��
, 

whereϕ  is scalar potential at the observation point. In this 

case Eq.(2.7) can be rewritten as follows: 
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( ) ( )H
H H

A
E v A grad vA grad

t
µ µ µ ϕ∂′ = − − ∇ + −

∂

�
� �� � �

 (2.12) 

or 

 ( )( )H
dA

E grad vA
dt

µ µ ϕ′ = − + −
�

�� �
. (2.13) 

If both parts of Eq. (2.12) are multiplied by the magnitude 

of the charge, then will come out the total force, which acts 

on the charge. From Lorentz force it will differ in terms of 

the force H
A

e
t

µ ∂
−

∂

�

.From Eq. (2.13) it is evident that the value

( )vAµ ϕ−
��

 plays the role of the generalized scalar potential. 

After taking rotor from both parts of Eq. (2.13) and taking 

into account that 0rot grad = , we will obtain 

dH
rot E

dt
µ′ = −
�

. 

If we in this equation replace total derivative by the 

quotient, then we will obtain the Maxwell first equation. 

After performing this operation, we obtained the Maxwell 

first equation, but they lost information about power 

interaction of the moving charge with the magnetic field. 

This examination maximally explained the physical picture 

of mutual induction. We specially looked to this question 

from another point of view, in order to permit those 

contradictory judgments, which occur in the fundamental 

monograph according to the theory of electricity. 

Previously Lorentz force was considered as the 

fundamental experimental postulate, not connected with the 

law of induction. By calculation to obtain last term of the 

right side of Eq. (2.11) was only within the framework 

special relativity (SP), after introducing two postulates of this 

theory. In this case all terms of Eq. (2.11) are obtained from 

the law of induction, using the Galileo conversions. 

Moreover Eq. (2.11) this is a complete law of mutual 

induction, if it are written down in the terms of vector 

potential. And this is the very thing rule, which gives 

possibility, knowing fields in one IRF, to calculate fields in 

another. 

With conducting of experiments Faraday established that 

in the outline is induced the current, when in the adjacent 

outline direct current is switched on or is turned off or 

adjacent outline with the direct current moves relative to the 

first outline. Therefore in general form Faraday law is written 

as follows: 

 Bd
E dl

dt

Φ′ ′ = −∫
��

� . (2.14) 

This writing of law indicates that with the determination of 

the circulation E
�

 in the moving IRF, near E
�

 and dl
�

 must 

stand primes and should be taken total derivative. But if 

circulation is determined in the fixed IRF, then primes near 

E
�

 and dl
�

 be absent, but in this case to the right in 

expression (2.14) must stand particular time derivative. 

Complete time derivative in Eq. (2.14) indicates the 

independence of the eventual result of appearance e.m.f. in 

the outline from the method of changing the flow. Flow can 

change both due to the change of B
�

with time and because 

the system, in which is measured the circulation E dl′ ′∫
��

� , it 

moves in the three-dimensional changing field B
�

. The value 

of magnetic flux in Eq. (2.14) is determined from the 

equation 

 B
Ф Bds′= ∫

� �
 (2.15) 

where the magnetic induction B Hµ=
� �

 is determined in the 

fixed IRF, and the element ds′�  is determined in the moving 

system. 

Taking into account Eq. (2.14), from Eq. (2.15) we obtain 

d
E dl B ds

dt
′ ′ ′= −∫ ∫
�� � �

� . 

and further, since 
d

v grad
dt t

∂= +
∂
�

, let us write down 

 
B

E dl ds B v dl vdivBds
t

∂
 ′ ′ ′ ′ ′= − − × − ∂∫ ∫ ∫ ∫

�
� �� � �� � � �

� . (2.16) 

In this case contour integral is taken on the outline dl′
�

, 

which covers the area ds′� . Let us immediately note that 

entire following presentation will be conducted under the 

assumption the validity of the Galileo conversions, i.e., 

dl dl′ =
�

and ds ds′ =� �
. From (2.16) follows the known result 

 E E v B ′ = + × 

� � ��
, (2.17) 

from which follows that during the motion in the magnetic 

field the additional electric field, determined by last term of 

equation appears (2.17). Let us note that this equation is 

obtained not by the introduction of postulate about the 

Lorentz force, or from the Lorenz conversions, but directly 

from the Faraday law, moreover within the framework the 

conversions of Galileo. Thus, Lorentz force is the direct 

consequence of the law of magnetoelectric induction. 

The equation follows from the Ampere law 

HH rot A=
��

. 

Then Eq. (2.16) can be rewritten 

HA
E v rotA

t
µ µ∂

 ′ = − + × ∂
�� �

, 

and further 

 ( ) ( )H
H H

A
E v A grad vA

t
µ µ µ∂′ = − − ∇ +

∂

�
� �� � �

. (2.18) 
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Again came out Eq. (2.7), but it is obtained directly from 

the Faraday law. True, and this way thus far not shedding 

light on physical nature of the origin of Lorentz force, since 

the true physical causes for appearance and magnetic field 

and vector potential to us nevertheless are not thus far clear. 

With the examination of the forces, which act on the 

charge, we limited to the case, when the time lag, necessary 

for the passage of signal from the source, which generates 

vector potential, to the charge itself was considerably less 

than the period of current variations in the conductors. Now 

let us remove this limitation. 

The Maxwell second equationin the terms of vector 

potential can be written down as follows: 

 ( )H Hrot rotA j A=
� ��

, (2.19) 

where ( )Hj A
��

 is certain functional from 
HA
�

, depending on 

the properties of the medium in question. If is carried out 

Ohm law j Eσ=
��

, then 

 ( ) H
H

A
j A

t
σµ ∂

= −
∂

�
��

. (2.20) 

For the free space takes the form: 

 
2

2
( ) H

H

A
j A

t
µε ∂

= −
∂

�
��

. (2.21) 

For the free charges the functional takes the form: 

of 

 ( )H H

k

j A A
L

µ= −
� ��

, (2.22) 

where
2k

m
L

ne
=  is kinetic inductance of charges [18,19]. In 

this equation m  is the mass of charge, e  is the magnitude of 

the charge, n is charge density. 

Equations (2.20 - 2.22) reflect well-known fact about 

existence of three forms of the electric current: active and 

two reactive. Each of them has characteristic dependence on 

the vector potential. This dependence determines the rules of 

the propagation of vector potential in different media. Here 

one should emphasize that Eqs. (2.20 - 2.22) assume not only 

the presence of current, but also the presence of those 

material media, in which such currents can leak. The 

conduction current, determined by Eqs. (2.20) and (2.22), can 

the leak through the conductors, in which there are free 

current carriers. Bias current, can the leak through the free 

space or the dielectrics. For the free space Eq. (2.19) takes 

the form: 

 
2

2

H

H

A
rot rotA

t
µε ∂

= −
∂

�
�

. (2.23) 

This wave equation, which attests to the fact that the 

vector potential can be extended in the free space in the form 

of plane waves, and it on its information capability does not 

be inferior to the wave equations, obtained from Maxwell's 

equations. This equation on its information capability does 

not be inferior to wave equations for the electrical and 

magnetic field on, obtained from Maxwell equations. 

Everything said attests to the fact that in the classical 

electrodynamics the vector potential has important 

significance. Its use shedding light on many physical 

phenomena, which previously were not intelligible. And, if it 

will be possible to explain physical nature of this potential, 

then is solved the very important problem both of theoretical 

and applied nature. 

3. Laws of the Electromagnetic 

Induction 

The Faraday law shows, how a change in the magnetic 

field on it leads to the appearance of electrical field on. 

However, does arise the question about that, it does bring a 

change in the electrical field on to the appearance of 

magnetic field on? In the case of the absence of conduction 

currents the the Maxwell second equation appears as follows: 

E D
rot H

t t
ε ∂ ∂= =

∂ ∂

� �
�

, 

where D Eε=
� �

 is electrical induction. 

And further 

 EH dl
t

∂Φ
=

∂∫
��

� , (3.1) 

where
E

DdsΦ = ∫
� �

is the flow of electrical induction. 

However for the complete description of the processes of 

the mutual electrical induction of Eq. (3.1) is insufficient. As 

in the case Faraday law, should be considered the 

circumstance that the flow of electrical induction can change 

not only due to the local derivative of electric field on the 

time, but also because the outline, along which is produced 

the integration, it can move in the three-dimensional 

changing electric field. This means that in Eq. (3.1), as in the 

case Faraday law, should be replaced the partial derivative by 

the complete. Designating by the primes of field and circuit 

elements in moving IRF, we will obtain: 

Ed
H dl

dt

Φ′ ′ =∫
��

� , 

and further 

 
D

H dl ds D v dl vdivDds
t

∂
 ′ ′ ′ ′ ′= + × + ∂∫ ∫ ∫ ∫

�
� �� � �� � � �

� � . (3.2) 

For the electrically neutral medium 0divE =
�

, therefore the 

last member of right side in this expression will be absent. 

For this case Eq. (3.2) will take the form: 
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D

H dl ds D v dl
t

∂
 ′ ′ ′ ′= + × ∂∫ ∫ ∫

�
� �� �� �

� � . (3.3) 

If we in this equation pass from the contour integration to 

the integration for the surface, then we will obtain: 

 
D

rotH rot D v
t

∂
 ′ = + × ∂

�
� � �

. (3.4) 

If we, based on this equation, write down fields in this 

inertial system, then prime near H
�

and second member of 

right side will disappear, and we will obtain the bias current, 

introduced by Maxwell. But Maxwell introduced this 

parameter, without resorting to the law of electromagnetic 

induction. If his law of magnetoelectric induction Faraday 

derived on the basis experiments with the magnetic fields, 

then experiments on the establishment of the validity of Eq. 

(3.2) cannot be at that time conducted was, since for 

conducting this experiment sensitivity of existing at that time 

meters did not be sufficient. 

On from Eq.(3.4) we obtain for the case of constant 

electrical field: 

 vH v Eε  ′ = − × 

� ��
. (3.5) 

It is possible to express the electric field through the rotor 

of electrical vector potential, after assuming 

 
EE rot A=
��

. (3.6) 

Equation (3.4) taking into account Eq.(3.6) will be written 

down: 

E
E

A
H v rot A

t
ε ε∂

 ′ = − × ∂

�
�� �

. 

Further it is possible to repeat all those procedures, which 

has already been conducted with the magnetic vector 

potential, and to write down the following equations: 

( ) ( )E
E E

A
H v A grad vA

t
ε ε ε∂′ = + ∇ −

∂

�
� �� � �

, 

E
E

A
H v rot A

t
ε ε∂

 ′ = − × ∂

�
�� �

, 

( )E
E

dA
H grad vA

dt
ε ε′ = −

� �
. 

Is certain, the study of this problem it would be possible, 

as in the case the law of magnetoelectric induction, to begin 

from the introduction of the vector 
EA
�

. This procedure was 

for the first time proposed in article [5]. 

The introduction of total derivatives in the laws of 

induction substantially explains physics of these processes 

and gives the possibility to isolate the force components, 

which act on the charge. This method gives also the 

possibility to obtain transformation laws fields on upon 

transfer of one IRF to another. 

4. Plurality of the Forms of the 

Writing of the Electrodynamic 

Laws 

In the previous paragraph it is shown that the magnetic and 

electric fields can be expressed through their vector 

potentials 

 
HH rot A=
��

, (4.1) 

 
EE rot A=
��

. (4.2) 

Consequently, Maxwell equations can be written down 

with the aid of these potentials: 

 H
E

A
rot A

t
µ ∂

= −
∂

�
�

 (4.3) 

 E
H

A
rot A

t
ε ∂

=
∂

�
�

. (4.4) 

For each of these potentials it is possible to obtain wave 

equation, in particular 

 
2

2

E

E

A
rot rot A

t
εµ ∂

= −
∂

�
�

 (4.5) 

and to consider that in the space are extended not the 

magnetic and electric fields, but the field of electrical vector 

potential. 

In this case, as can easily be seen of the Eqs. (4.1 - 4.4), 

magnetic and electric field they will be determined through 

this potential by the equations: 

 
E

E

A
H

t

E rot A

ε ∂
=

∂
=

�
�

��
. (4.6) 

Space derivative
Erot A
�

 and local time derivative E
A

t

∂
∂

�

 are 

connected with wave equation (4.5). 

Thus, the use only of one electrical vector potential makes 

it possible to completely solve the task about the propagation 

of electrical and magnetic field on. Taking into account (4.6), 

Pointing vector can be written down only through the vector 

EA
�

: 

E
E

A
P rot A

t
ε
 ∂

= × ∂ 

�
��

. 

Characteristic is the fact that with this method of 

examination necessary condition is the presence at the 

particular point of space both the time derivatives, and space 

derivative of one and the same potential. 
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This task can be solved by another method, after writing 

down wave equation for the magnetic vector potential: 

 
2

2

H

H

A
rot rot A

t
εµ ∂

= −
∂

�
�

. (4.7) 

In this case magnetic and electric fields will be determined 

by the equations: 

H

H

H rot A

A
E

t
µ

=

∂
= −

∂

��

�
� . 

Pointing vector in this case can be found from the 

following equation: 

H
H

A
P rot A

t
µ
 ∂

= − × ∂ 

�
��

. 

Space derivative
Hrot A
�

 and local time derivative of H
A

t

∂
∂

�

 

are connected with wave equation (4.7). 

But it is possible to enter and differently, after introducing, 

for example, the electrical and magnetic currents 

Ej rot H=
��

, 

Hj rot E=
��

. 

The equations also can be recorded for these currents: 

E

H

j
rot j

t
µ ∂= −

∂

�
�

, 

H

E

j
rot j

t
ε ∂=

∂

�
�

. 

This system in its form and information concluded in it 

differs in no way from Maxwell equations, and it is possible 

to consider that in the space the magnetic or electric currents 

are extended. And the solution of the problem of propagation 

with the aid of this method will again include complete 

information about the processes of propagation. 

The method of the introduction of new vector examined 

field on it is possible to extend into both sides ad infinitum, 

introducing all new vectorial fields. Naturally in this case 

should be introduced additional calibrations. Thus, there is an 

infinite set of possible writings of electrodynamic laws, but 

they all are equivalent according to the information 

concluded in them. This approach was for the first time 

demonstrated in the article [5]. 

5. Dynamic Potentials and the Field 

of the Moving Charges 
The way, which is concerned the introduction of total 

derivatives field on and vector potential it was begun still in 

Maxwell, since it wrote its equations in the total derivatives. 

Hertz also wrote the equations of electrodynamics in the total 

derivatives. Hertz did not introduce the concept of vector 

potentials, but he operated only with fields, but this does not 

diminish its merits. It made mistakes only in the fact that the 

electrical and magnetic fields were considered the invariants 

of speed. But already simple example of long lines is 

evidence of the inaccuracy of this approach. With the 

propagation of wave in the long line it is filled up with two 

forms of energy, which can be determined through the 

currents and the voltages or through the electrical and 

magnetic fields in the line. And only after wave will fill with 

electromagnetic energy all space between the generator and 

the load on it will begin to be separated energy. I.e. the time, 

by which stays this process, generator expended its power to 

the filling with energy of the section of line between the 

generator and the load. But if we begin to move away load 

from incoming line, then a quantity of energy being isolated 

on it will decrease, since. the part of the energy, expended by 

source, will leave to the filling with energy of the additional 

length of line, connected with the motion of load. If load will 

approach a source, then it will obtain an additional quantity 

of energy due to the decrease of its length. But if effective 

resistance is the load of line, then an increase or the decrease 

of the power expendable in it can be connected only with a 

change in the stress on this resistance. 

Being located in assigned IRF, us interest those fields, 

which are created in it by the fixed and moving charges, and 

also by the electromagnetic waves, which are generated by 

the fixed and moving sources of such waves. The fields, 

which are created in this IRF by moving charges and moving 

sources of electromagnetic waves, we will call dynamic. Can 

serve as an example of dynamic field the magnetic field, 

which appears around the moving charges. 

As already mentioned, in the classical electrodynamics be 

absent the rule of the conversion of electrical and magnetic 

field on upon transfer of one inertial system to another. This 

deficiency removes SR, basis of which are the Lorenz 

conversions. With the entire mathematical validity of this 

approach the physical essence of such conversions up to now 

remains unexplained. 

in this division will made attempt find the precisely 

physically substantiated ways of obtaining the conversions 

field on upon transfer of one IRF to another, and to also 

explain what dynamic potentials and fields can generate the 

moving charges. The first step in this direction was made a 

way of the introduction of the symmetrical laws of 

magnetoelectric and electromagnetic induction [5]. These 

laws are written as follows: 

 

B
E dl ds v B dl

t

D
H dl ds v D dl

t

∂
 ′ ′ ′= − + × ∂

∂
 ′ ′ ′= − × ∂

∫ ∫ ∫

∫ ∫ ∫

�
� �� �

�
� �� �

� �

� �

 (5.1) 

or 
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B
rotE rot v B

t

D
rotH rot v D

dt

∂
 ′ = − + × ∂

∂
 ′ = − × 

�
� ��

�
� ��

. (5.2) 

For the constants fields on these equations they take the 

form: 

 
E v B

H v D

 ′ = × 

 ′ = − × 

� ��

� �� . (5.3) 

In Eqs. (5.1-5.3), which assume the validity of the Galileo 

conversions present fields and elements in moving and fixed 

IRF respectively. It must be noted, that conversions (5.3) 

earlier could be obtained only from the Lorenz conversions. 

Equations (5.1-5.3), which present the laws of induction, 

do not give information about how arose fields in initial fixed 

IRF. They describe only laws governing the propagation and 

conversion fields on in the case of motion with respect to the 

already existing fields. 

Equation(5.3) attest to the fact that in the case of relative 

motion of frame of references, between the fields E
�

 and H
�

 

there is a cross coupling, i.e., motion in the fields H
�

 leads to 

the appearance field on E
�

 and vice versa. From these 

equations escape the additional consequences. 

The electric field 
2

g
E

rπε=  beyond the limits of the 

charged long rod, where g  is a linear charge, diminishes 

according to the law 
1

r
. 

If we in parallel to the axis of rod in the field E  begin to 

move with the speed v∆  another IRF, then in it will appear 

the additional magnetic field H E vε∆ = ∆ . If we now with 

respect to already moving IRF begin to move third frame of 

reference with the speed v∆ , then already due to the motion 

in the field H∆  will appear additive to the electric field 

( )2
E E vµε∆ = ∆ . This process can be continued and further, 

as a result of which can be obtained the number, which gives 

the value of the electric field ( )v
E r′  in moving IRF with 

reaching of the speed v n v= ∆ , when 0v∆ → , and 

n → ∞ .In the final analysis in moving IRF the value of 

dynamic electric field will prove to be more than in the initial 

and to be determined by the equation: 

( ),
2

v
gch vcE r v Ech

r cπε

⊥

⊥
⊥′ = = . 

If speech goes about the electric field of the single charge 

e , then its electric field will be determined by the equation: 

( ) 2
,

4

v
ech

cE r v
rπε

⊥

⊥′ = , 

where v⊥ is normal component of charge rate to the vector, 

which connects the moving charge and observation point. 

Expression for the scalar potential, created by the moving 

charge, for this case will be written down as follows: 

 
( , ) ( )

4

v
ech vcr v r ch

r c
ϕ ϕπε

⊥

⊥
⊥′ = =  (5.4) 

where ( )rϕ is scalar potential of fixed charge. The potential 

( , )r vϕ ⊥′  can be named scalar-vector, since it depends not 

only on the absolute value of charge, but also on speed and 

direction of its motion with respect to the observation point. 

Maximum value this potential has in the direction normal to 

the motion of charge itself. Moreover, if charge rate changes, 

which is connected with its acceleration, then can be 

calculated the electric fields, induced by the accelerated 

charge. 

During the motion in the magnetic field, using the already 

examined method, we obtain: 

( )
v

H v Hch
c
⊥

⊥′ = . 

where v⊥ isspeed normal to the direction of the magnetic 

field. 

If we apply the obtained results to the electromagnetic 

wave and to designate components fields on parallel speeds 

IRF as E↑ , H↑ , and E⊥ , H⊥ as components normal to it, then 

conversions fields on they will be written down: 

 

0

0

,

,

,

1
,

E E

Zv v
E E ch v H sh

c v c

H H

v v
H H ch v E sh

c vZ c

↑ ↑

⊥ ⊥ ⊥

↑ ↑

⊥ ⊥ ⊥

′ =

 ′ = + × 

′ =

 ′ = − × 

� �

� � ��

� �

� � ��

 (5.5) 

where 0

0

0

Z
µ
ε=  is impedance of free space, 

0 0

1
c µ ε=  is 

speed of light. 

Conversions fields on (5.5) they were for the first time 

obtained in the article [5]. 

6. Phase Aberration and the 

Transverse Doppler Effect 

Using Eqs. (5.5) it is possible to explain the phenomenon 

of phase aberration, which did not have within the framework 

existing classical electrodynamics of explanations. We will 

consider that there are components of the plane wave
z

H ,
x

E , 

which is extended in the direction y , and primed system 

moves in the direction of the axis x  with the speed
x

v . Then 

components fields will be written down: 
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Thus is a heterogeneous wave, which has in the direction 

of propagation the component 
v

E′ . 

Let us write down the summary field E′  in moving IRF 

  (6.1) 

If the vector H ′
�

 is as before orthogonal the axis y , then 

the vector E′  is now inclined toward it to the angle α , 

determined by the equation: 

 
v v

sh
c c

α ≅ ≅ . (6.2) 

Thisis phase aberration. Specifically, to this angle to be 

necessary to incline telescope in the direction of the motion 

of the Earth around the sun in order to observe stars, which 

are located in the zenith. 

 The Poynting vector is now also directed no longer 

along the axis y , but being located in the plane xy , it is 

inclined toward the axis y  to the angle, determined by Eqs. 

(6.2). However, the relation of the absolute values of the 

vectors of E ′
�

 and H ′
�

 in both systems they remained 

identical. However, the absolute value of Poynting vector 

increased. Thus, even transverse motion of inertial system 

with respect to the direction of propagation of wave increases 

its energy in the moving system. This phenomenon is 

understandable from a physical point of view. It is possible to 

give an example with the rain drops. When they fall 

vertically, then is energy in them one. But in the inertial 

system, which is moved normal to the vector of their of 

speed, to this speed the velocity vector of inertial system is 

added. In this case the absolute value of the speed of drops in 

the inertial system will be equal to square root of the sum of 

the squares of the speeds indicated. The same result gives to 

us Eq. (6.1). 

Such waves have in the direction of its propagation 

additional of the vector of electrical or magnetic field, and in 

this they are similar to E  and H of the waves, which are 

extended in the waveguides. In this case appears the 

uncommon wave, whose phase front is inclined toward the 

Poynting vector to the angle, determined by Eq. (10.2). In 

fact obtained wave is the superposition of plane wave with 

the phase speed 
1

c µε=  and additional wave of plane wave 

with the infinite phase speed orthogonal to the direction of 

propagation. 

The transverse Doppler effect, who long ago is discussed 

sufficiently, until now, did not find its confident experimental 

confirmation. For observing the star from moving IRF it is 

necessary to incline telescope on the motion of motion to the 

angle, determined by Eq. (6.2). But in this case the star, 

observed with the aid of the telescope in the zenith, will be in 

actuality located several behind the visible position with 

respect to the direction of motion. Its angular displacement 

from the visible position in this case will be determined by 

Eq. (6.2). But this means that this star with respect to the 

observer has radial speed, determined by the equation 

sin
r

v v α= . 

Since for the low values of the angles sinα α≅ , and 

v

c
α = , Doppler frequency shift will compose 

 
2

0 2d

v

c
ω ω⊥ = . (6.3) 

This result numerically coincides with results SR, but it is 

principally characterized by of results. It is considered SR 

that the transverse Doppler effect, determined by Eq. (6.3), 

there is in reality, while in this case this only apparent effect. 

If we compare the results of conversions fields on (6.5) with 

conversions SP, then it is not difficult to see that they 

coincide with an accuracy to the quadratic members of the 

ratio of the velocity of the motion of charge to the speed of 

light. 

Conversion SP, although they were based on the 

postulates, could correctly explain sufficiently accurately 

many physical phenomena, which before this explanation did 

not have. With this circumstance is connected this great 

success of this theory. Conversions (6.4) and (6.5) are 

obtained on the physical basis without the use of postulates 

and they with the high accuracy coincided with SP. 

Difference is the fact that in conversions (6.5) there are no 

limitations on the speed for the material particles, and also 

the fact that the charge is not the invariant of speed. The 

experimental confirmation of the fact indicated can serve as 

the confirmation of correctness of the proposed conversions. 

7. The Problem of the Lorentz Force 

and Power Interaction of the 

Current-Carrying Systems and Its 

Solution 

It was already said, that Maxwell equations do not include 

information about power interaction of the current carrying 

systems. In the classical electrodynamics for calculating such 

an interaction it is necessary to calculate magnetic field in the 

assigned region of space, and then, using a Lorentz force, to 

find the forces, which act on the moving charges. Obscure a 

question about that remains with this approach, to what are 

applied the reacting forces with respect to those forces, which 

act on the moving charges. 

The concept of magnetic field arose to a considerable 

degree because of the observations of power interaction of 

,

,

.

x x

x

y z

x

z z

E E

v
E H sh

c

v
H H ch

c

′ =

′ =

′ =

( ) ( )
1

2 22
.x

x y x

v
E E E E ch

c
 ′ ′ ′= + =  
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the current carrying and magnetized systems. Experience 

with the iron shavings, which are erected near the magnet 

poles or around the annular turn with the current into the 

clear geometric figures, is especially significant. These 

figures served as occasion for the introduction of this concept 

as the lines of force of magnetic field. In accordance with 

third Newton law with any power interaction there is always 

a equality of effective forces and opposition, and also always 

there are those elements of the system, to which these forces 

are applied. A large drawback in the concept of magnetic 

field is the fact that it does not give answer to that, 

counteracting forces are concretely applied to what, since. 

magnetic field comes out as the independent substance, with 

which occurs interaction of the moving charges. 

Is experimentally known that the forces of interaction in 

the current carrying systems are applied to those conductors, 

whose moving charges create magnetic field.However, in the 

existing concept of power interaction of such systems the 

positively charged lattice, to which are applied the forces, 

does not participate in the formation of the forces of 

interaction. 

Let us examine this question on the basis of the concept of 

scalar- vector potential. We will consider that the scalar- 

vector potential of single charge is determined by Eq. (9.4), 

and that the electric fields, created by this potential, act on all 

surrounding charges, including to the charges positively 

charged lattices. 

Let us examine from these positions power interaction 

between two parallel conductors (Fig. 1), along which flow 

the currents. We will consider that 
1g + , 

2g +  and 
1g − , 

2g −  

present the respectively fixed and moving linear charges. 

 

Fig. 1. Schematic of power interaction of the current carrying wires of two-

wire circuit taking into account the positively charged lattice. 

The linearcharges 
1g + ,

2g +  present the positively charged 

lattice in the lower and upper conductors. We will also 

consider that both conductors prior to the start of charges are 

electrically neutral. This means that in the conductors are two 

systems of the mutually inserted opposite charges with the 

lineardensity
1g + , 

1g −  and 
2g + , 

2g − , which neutralize each 

other.In Fig. 1 these systems for larger convenience in the 

examination of the forces of interaction are moved apart 

along the axis z . Subsystems with the negative charge 

(electrons) can move with the speeds 
1

v ,
2

v . The force of 

interaction between the lower and upper conductors we will 

search for as the sum of four forces, whose designation is 

understandable from the figure. The repulsive forces 
1

F ,
2

F  

we will take with the minus sign, while the attracting force

3
F ,

4
F  we will take with the plus sign. 

For the single section of the two-wire circuit of force, 

acting between the separate subsystems, will be written down 

 

1 2

1

1 2 1 2

2

1 2 1
3

1 2 2

4

,
2

,
2

,
2

.
2

g g
F

r

g g v v
F ch

r c

g g v
F ch

r c

g g v
F ch

r c

πε

πε

πε

πε

+ +

− −

− +

+ −

= −

−
= −

= +

= +

 (7.1) 

Adding all force components, we will obtain the amount of 

the composite linearforce 

 
1 2 1 2 1 2 1

2

g g v v v v
F ch ch ch

r c c cπεΣ
− = + − − 

 
. (7.2) 

In this expression as 
1

g  and 
2

g  are undertaken the 

absolute values of the linearcharges, and the signs of forces 

are taken into account in the bracketed expression.For the 

case v c≪  let us take only two first members of expansion 

in the series 
v

ch
c

, i.e., we will consider that 

2

2

1
1

2

v v
ch

c c
≅ + .From Eq. (7.2) we obtain 

 1 1 2 2 1 2

1 2 22 2

g v g v I I
F

c r c rπε πεΣ = =  (7.3) 

where as
1

g  and 
2

g are undertaken the absolute values of the 

linear charges, and 
1

v , 
2

v  take with its signs. 

Since the magnetic field of straight wire, along which 

flows the current I , we determine by the equation 

2

I
H

rπ=
, 

from Eq. (7.3) we obtain 

1 2 1 2

1 2 12 22

I I H I
F I H

c r c
µ

πε εΣ = = = , 

where
1

H  is the magnetic field, created by lower conductor in 

the location of upper conductor. 

It is analogous 

1 1 2
F I HµΣ = , 

where
2

H  is the magnetic field, created by upper conductor 

in the region of the arrangement of lower conductor. 

These equations coincide with the results, obtained on the 
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basis of the concept of magnetic field and Lorentz forces. 

Equation (7.3) represents the known rule of power 

interaction of the current-carrying systems, but it is obtained 

not on the basis the introduction of phenomenological 

magnetic field, but on the basis of completely intelligible 

physical procedures. In the formation of the forces of 

interaction in this case the lattice takes direct part, which is 

not in the model of magnetic field. In the model examined 

are well visible the places of application of force. The 

obtained equations coincide with the results, obtained on the 

basis of the concept of magnetic field and by the 

axiomatically introduced Lorentz force. In this case is 

undertaken only first member of expansion in the series 

v
ch

c
.For the speeds v c≈  should be taken all terms of 

expansion. If we consider this circumstance, then the 

connection between the forces of interaction and the charge 

rates proves to be nonlinear. This, in particular it leads to the 

fact that the law of power interaction of the current-carrying 

systems is asymmetric. With the identical values of currents, 

but with their different directions, the attracting forces and 

repulsion become unequal. Repulsive forces prove to be 

greater than attracting force. This difference is small and is 

determined by the expression 

2

1 2

2 22 2

I Iv
F

c cπε ε
∆ = , 

but with the speeds of the charge carriers of close ones to the 

speed of light it can prove to be completely perceptible. 

Let us remove the lattice of upper conductor, after leaving 

only free electronic flux. In this case will disappear the forces

1
F ,

3
F , and this will indicate interaction of lower conductor 

with the flow of the free electrons, which move with the 

speed 
2

v  on the spot of the arrangement of upper conductor. 

In this case the value of the force of interaction is defined as: 

 
1 2 2 1 2

2

g g v v v
F ch ch

r c cπεΣ
− = − 

 
. (7.4) 

Lorentz force assumes linear dependence between the 

force, which acts on the charge, which moves in the magnetic 

field, and his speed. However, in the obtained equation the 

dependence of the amount of force from the speed of 

electronic flux will be nonlinear. From Eq. (7.4) see that with 

an increase in 
2

v  the deviation from the linear law increases, 

and in the case, when 2 1v v≫ , the force of interaction are 

approached zero. This is meaningful result. Specifically, this 

phenomenon observed in their known experiments 

Thompson and Kauffmann, when they noted that with an 

increase in the velocity of electron beam it is more badly 

slanted by magnetic field. They connected the results of their 

observations with an increase in the mass of electron. As we 

see reason here another. 

Let us note still one interesting result. From Eq. (7.3) the 

force of interaction of electronic flux with a straight wire to 

determine according to the following dependence: 

 

2

1 2 1 2 1

2 2

1

2 2

g g v v v
F

r c cπεΣ

 
= − 

 
. (7.5) 

From Eq. (7.5) follows that with the unidirectional electron 

motion in the conductor and in the electronic flux the force of 

interaction with the fulfillment of conditions 1 2

1

2
v v=  is 

absent. 

Since the speed of the electronic flux usually much higher 

than speed of current carriers in the conductor, the second 

term in the brackets in Eq. (7.5) can be disregarded. Then, 

since 

1 1

1 22

g v
H

c rπε
=  

we will obtain the magnetic field, created by lower conductor 

in the place of the motion of electronic flux: 

1 2 1 2

2 222

g g v v
F g v H

r c
µπεΣ = = . 

In this case, the obtained value of force coincides with the 

value of Lorentz force. 

Taking into account that 

2 2 2F g E g v HµΣ = = , 

it is possible to consider that on the charge, which moves in 

the magnetic field, acts the electric field E , directed normal 

to the direction of the motion of charge. This result also with 

an accuracy to of the quadratic terms

2

2

v

c
 completely 

coincides with the results of the concept of magnetic field 

and is determined Lorentz force. 

As was already said, one of the important contradictions to 

the concept of magnetic field is the fact that two parallel 

beams of the like charges, which are moved with the identical 

speed in one direction, must be attracted. In this model there 

is no this contradiction already. If we consider that the charge 

rates in the upper and lower wire will be equal, and lattice is 

absent, i.e., to leave only electronic fluxes, then will remain 

only the repulsive force 2F . 

Thus, the moving electronic flux interacts simultaneously 

both with the moving electrons in the lower wire and with its 

lattice, and the sum of these forces of interaction it is called 

Lorentz force. 

Regularly does appear a question, and does create 

magnetic field most moving electron stream of in the absence 

compensating charges of lattice or positive ions in the 

plasma? The diagram examined shows that the effect of 

power interaction between the current carrying systems 

requires in the required order of the presence of the positively 

charged lattice. Therefore most moving electronic flux 

cannot create that effect, which is created during its motion in 

the positively charged lattice. 

Let us demonstrate still one approach to the problem of 
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power interaction of the current carrying systems. The 

statement of facts of the presence of forces between the 

current carrying systems indicates that there is some field of 

the scalar potential, whose gradient ensures the force 

indicated. But that this for the field? Equation (7.3) gives 

only the value of force, but he does not speak about that, the 

gradient of what scalar potential ensures these forces. We 

will support with constants the currents 
1

I , 
2

I , and let us 

begin to draw together or to move away conductors. The 

work, which in this case will be spent, and is that potential, 

whose gradient gives force. After integrating Eq. (7.3) on r , 

we obtain the value of the energy: 

1 2

2

ln

2

I I r
W

cπε
= . 

This energy, depending on that to move away conductors 

from each other, or to draw together, can be positive or 

negative. When conductors move away, then energy is 

positive, and this means that, supporting current in the 

conductors with constant, generator returns energy. This 

phenomenon is the basis the work of all electric motors.If 

conductors converge, then work accomplish external forces, 

on the source, which supports in them the constancy of 

currents. This phenomenon is the basis the work of the 

mechanical generators of e.m.f. 

Equation for the energy can be rewritten and thus: 

1 2

2 1 1 22

ln

2
z z

I I r
W I A I A

cπε
= = = , 

where 

1

1 2

ln

2
z

I r
A

cπε
=  

is z  component of vector potential, created by lower 

conductor in the location of upper conductor, and 

2

2 2

ln

2
z

I r
A

cπε
=  

is z  component of vector potential, created by upper 

conductor in the location of lower conductor. 

The approach examined demonstrates that large role, 

which the vector potential in questions of power interaction 

of the current-carrying systems and conversion of electrical 

energy into the mechanical plays. This approach also clearly 

indicates that the Lorentz force is a consequence of 

interaction of the current-carrying systems with the field of 

the vector potential, created by other current-carrying 

systems. Important circumstance is the fact that the formation 

of vector potential is obliged to the dependence of scalar 

potential on the speed. This is clear from a physical point of 

view. The moving charges, in connection with the presence 

of the dependence of their scalar potential on the speed, 

create the scalar field, whose gradient gives force. But the 

creation of any force field requires expenditures of energy. 

These expenditures accomplishes generator, creating currents 

in the conductors. In this case in the surrounding space is 

created the special field, which interacts with other moving 

charges according to the special vector rules. In this case only 

scalar product of the charge rate and vector potential gives 

the potential, whose gradient gives the force, which acts on 

the moving charge. This is the Lorentz force. 

In spite of simplicity and the obviousness of this approach, 

this simple mechanism up to now was not finally realized. 

For this reason the Lorentz force, until now, was introduced 

in the classical electrodynamics by axiomatic way. 

8. Scalar-Vector Potential and 

Homopolar Induction 

Since Faraday opened the phenomenon of homopolar 

induction, past almost 200 years, but also up to now not all 

special features of this phenomenon found their explanation 

[14,15,17]. Up to now unipolar generator is considered 

exception from the law of the induction of Faraday. The 

attempts to explain all special features of homopolar 

induction with the aid of postulate about the Lorentz force 

did not give results. This postulate assumes that on the 

charge, which moves in the magnetic field, acts the force 

0LF e v Hµ = × 

� ��
. 

In order to use this equation, it is necessary to know charge 

rate and must be assigned the external magnetic field, in 

which the charge moves. The oscillator circuit, which 

realizes the principle indicated, it is shown in Fig. 2.Faraday 

also revealed that during the rotation of the conducting disk, 

magnetized in the end direction, on the brushes, which slide 

along the axis of disk and his generatrix, appears the 

electromotive force. This version of unipolar generator it is 

not possible to explain the aid of postulate about the Lorentz 

force. 

 

Fig. 2. Unipolar generator, with the external magnetic field. 

During the rotation in the magnetic field of the rotor, made 

from conductor, free charges revolve together with the body 

of rotor, and Lorentz force acts on them, and the 

electromotive force appears between the axis of rotor and its 

periphery. The schematic of the unipolar generator, whose 

work cannot be explained with the aid of the postulate about 

the Lorentz force, is represented in Fig. 3 
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Fig. 3. Unipolar generator with two disks. 

On the common axis are located two disks, one of which is 

magnetized, but no another. When both disks accomplish 

joint rotation, the electromotive force appears between the 

cheeks, which slide along the axis of the conducting disk and 

its generatrix. The electromotive force of the same value 

appears and the when conducting disk revolves, and the 

magnetized disk is fixed. It does not succeed to explain the 

work of this generator for that reason, that physical nature of 

very Lorentz force is not clear, and up to now it is introduced 

by axiomatic method. Therefore by the first task, which 

should be solved in order to explain the work of unipolar 

generators, the explanation of physical nature of Lorentz 

force appears. 

In the previous division it was shown that the Lorentz 

force is the result of the dependence of the scalar potential of 

charge on the speed. Consequently, and the special feature of 

the work of different constructions of unipolar generators one 

should also search for by this method. 

Let us examine the case, when there is a single long 

conductor, along which flows the current. We will as before 

consider that in the conductor is a system of the mutually 

inserted charges of the positive lattice of g + and free 

electrons of g − , which in the absence current neutralize each 

other (Fig. 4). 
The electric field of conductor, created by rigid lattice, is 

determined by the equation 

 
2

g
E

rπε

+
+ =  (8.1) 

 

Fig. 4. Section is the conductor, along which flows the current. 

We will consider that the direction of the vector of electric 

field coincides with the direction r
�

. If the charges of 

electronic flux move with the speed
1

v , then electrical field of 

flow is determined by the equation 
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1 1

2

1
1

2 2 2

v vg g
E ch

r c r cπε πε
− −

−  
= − = − + 

 
. (8.2) 

Adding Eq. (8.1) and Eq.(8.2), we obtain: 

2

1

2
4

g v
E

c rπε

−
− = −  

This means that around the conductor with the current is 

an electric field, which corresponds to the negative charge of 

conductor. However, this field has insignificant value, since 

in the real conductors v c≪ . This field can be discovered 

only with the current densities, which can be achieved in the 

superconductors. 

Let us examine the case, when very section of the 

conductor, on which with the speed 1v  flow the electrons, 

moves in the opposite direction with speed v  (Fig. 5. In this 

case Eqs.(8.1) and (8.2) will take the form 
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1
1
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 (8.3) 
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v vg
E

r cπε
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 (8.4) 

 
Fig. 5. Conductor with the current, moving along the axis z . 

Adding Eqs. (8.3) and (8.4), we obtain 

 

2

1 1

2 2

1

2 2

vv vg
E

r c cπε
+  

= − 
 

 (8.5) 

In this equation as the specific charge is undertaken its 

absolute value. Since the speed of the mechanical motion of 

conductor is considerably more than the drift velocity of 

electrons, the second term in the brackets can be disregarded 

 1

22

gvv
E

c rπε
+ =  (8.6) 

The obtained result means that around the moving 

conductor, along which flows the current, is formed electric 

field. This is equivalent to appearance on the conductor of 

the linear positive charge 

1

2

gvv
g

c

+ =  

If we conductor roll up into the ring and to revolve it then 

so that the linear speed of its parts would be equal v , then 
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around this ring will appear the electric field, which 

corresponds to the presence on the ring of the specific charge 

indicated. But this means that the revolving turn, acquires 

electric charge. During the motion of linear conductor with 

the current the electric field will be observed with respect to 

the fixed observer, but if observer will move together with 

the conductor, then such fields will be absent. But if observer 

will move together with the conductor, then field will be 

absent for this observer. 

In Fig. 6.it is shown, as is obtained a voltage drop across 

the fixed contacts, which slide on the generatrix of the 

moving metallic plate, which is located near the moving 

conductor, along which flows the current. 

 

Fig. 6. Diagram of the formation of the electromotive force of homopolar 

induction. 

We will consider that 
1
r  and

2
r  of the coordinate of the 

points of contact of the tangency of the fixed contacts, which 

slide on the generatrix of metallic plate. Plate itself moves 

with the same speed also in the same direction as the 

conductor, along which flows the current. Contacts are 

connected to the voltmeter, which is also fixed. Then, it is 

possible to calculate a potential difference between these 

contacts, after integrating Eq. (4.6) 
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1 1 2

2 2
1

ln
2 2

r

r

gvv gvv rdr
U

r rc cπε πε
= =∫  (8.7) 

In order to apply to the contacts this potential difference, it 

is necessary sliding contacts to lock by the cross connection, 

on which a potential difference is absent. But since metallic 

plate moves together with the conductor, a potential 

difference is absent on it. It serves as the cross connection, 

which gives the possibility to convert this composite outline 

into the source of the electromotive strength, which acts in 

the circuit of voltmeter. 

Now it is possible wire to roll up into the ring (Fig. 7) and 

to feed it from the source of direct current. Instead of the 

single turn it is possible to use a solenoid. Contacts 1 should 

be connected to the collector ring, located on the rotational 

axis, and to the collector joined feeder brushes. Thus, obtain 

the revolving magnet. In this magnet should be placed the 

conducting disk with the opening (Fig. 5), that revolves 

together with the turns of magnet, and with the aid of the 

fixed contacts, that slides on the generatrix of disk, tax 

voltage on the voltmeter. As the limiting case it is possible to 

take continuous metallic disk and to connect sliding contacts 

to the generatrix of disk and its axis. Instead of the revolving 

turn with the current it is possible to take the disk, 

magnetized in the axial direction, which is equivalent to turn 

with the current, in this case the same effect will be 

obtained.In this case the same effect will be obtained. 

 

Fig. 7. Schematic of unipolar generator with the revolving turn with the 

current and the revolving conducting ring. 

This diagram corresponds to the construction of the 

generator, depicted in Fig. 3, when the conducting and 

magnetized disks revolve with the identical speed. The given 

diagram explains the work of unipolar generator with the 

revolving magnetized disk, since the conducting and 

magnetized disk it is possible to combine in one conducting 

magnetized disk. 

The work of generator with the fixed magnetized disk and 

by the revolving conducting disk describes the diagram, 

represented by Fig. 8. 

 

Fig. 8. Equivalent the schematic of unipolar generator with the fixed magnet 

and the revolving conducting disk. 

In this case the following equations are fulfilled: 

The electric field, generated in the moving plate by the 
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electrons, which move in the fixed conductor, is determined 

by the equation 

2

1 1
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, 

and the electric field, generated in the moving plate by ions 

in the fixed conductor, is determined by the equation 

2
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1
1
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. 

The summary tension of electric field in this case will 

comprise 

1

22

vvg
E

r cπε∑

 =  
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, 

The potential difference between the points
1
r  and 

2
r  in the 

coordinate system, which moves together with the plate, we 

will obtain, after integrating this equation with respect to the 

coordinate 
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U
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It is evident that this equation coincides with Eq. (8.7). 

In the circuit of voltmeter, fixed with respect to the fixed 

conductor, a potential difference is absent; therefore the 

potential difference indicated will be equal to the 

electromotive force acting in the chain in question. As earlier 

moving conducting plate can be rolled up into the disk with 

the opening, and the wire, along which flows the current into 

the ring with the current, which is the equivalent of the 

magnet, magnetized in the end direction. Ring can be 

replaced with solenoid. 

Thus, the concept of scalar-vector potential gives answers 

to all presented questions. 

9. Problem of Emission of 

Electromagnetic Wave and the 

Laws of the Electro-Electrical 

Induction 

Since field on any process of the propagation of electrical 

and potentials it is always connected with the delay, let us 

introduce the being late scalar- vector potential, by 

considering that the field of this potential is extended in this 

medium with a speed of light: 
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r

ϕ π ε
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 
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where
r

v t
c⊥

 − 
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 is component of the charge rate g , normal 

to the vector r
�

 at the moment of the time
r

t t
c

′ = − , r is 

distance between the charge and the point, at which is 

determined the field, at the moment of the time t . 

Using a equation ( , )E grad r tϕ= −
�

, let us find field at 

point 1 (Fig. 9). The gradient of the numerical value of a 

radius of the vector of r
�

 is a scalar function of two points: 

the initial point of a radius of vector and its end point (in this 

case this point 1 on the axis of x  and point 0 at the origin of 

coordinates). Point 1 is the point of source, while point 0 - by 

observation point. With the determination of gradient from 

the function, which contains a radius depending on the 

conditions of task it is necessary to distinguish two cases: 

1.The point of source is fixed and is considered as the 

function of the position of observation point. 

2. Observation point is fixed and is considered as the 

function of the position of the point of source. 

 

Fig. 9. Diagram of shaping of the induced electric field. 

We will consider that the charge e  accomplishes 

fluctuating motion along the axis y , in the environment of 

point 0, which is observation point, and fixed point 1 is the 

point of source and r
�

 is considered as the function of the 

position of charge. Then we write down the value of electric 

field at point 1: 
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when the amplitude of the fluctuations of charge is 

considerably less than distance to the observation point, it is 

possible to consider a radius vector constant. In this case we 

obtain: 
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 (9.2) 
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where x  is some fixed point on the axis x . 

Taking into account that  
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y y y
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c c ct
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we obtain from (9.2): 
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This is a complete emission law of the moving charge. 

If we take only first term of the expansion, then we will 

obtain from (9.3): 
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where y

x
a t

c

 − 
 

 is being late acceleration of charge. This 

equation is wave equation and defines both the amplitude and 

phase responses of the wave of the electric field, radiated by 

the moving charge. 

If we as the direction of emission take the vector, which 

lies at the plane xy , and which constitutes with the axis y  

the angle α , then Eq.(9.4) takes the form: 
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Equation (10.5) determines the radiation pattern. Since in 

this case there is axial symmetry relative to the axis y , it is 

possible to calculate the complete radiation pattern of this 

emission. This diagram corresponds to the radiation pattern 

of dipole emission. 

Since of 
4
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x
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c x
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x cπ
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 is being late vector 

potential, Eq.(9.5) it is possible to rewrite 
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Is again obtained complete agreement with the equations 

of the being late vector potential, but vector potential is 

introduced here not by phenomenological method, but with 

the use of a concept of the being late scalar-vector potential. 

It is necessary to note one important circumstance: in 

Maxwell's equations the electric fields, which present wave, 

vortex. In this case the electric fields bear gradient nature. 

Let us demonstrate the still one possibility, which opens 

Eq.(9.5). It is known that in the electrodynamics there is this 

concept, as the electric dipole and dipole emission. Two 

charges with the opposite signs have the dipole moment: 

 p ed=
��

 (9.6) 

where the vector d
�

is directed from the negative charge 

toward the positive charge. Therefore current can be 

expressed through the derivative of dipole moment on the 

time 

d p
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Consequently 
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Substituting this equation into expression (9.5), we obtain 

the emission law of the being varied dipole. 
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This is also known equation [17]. 

In the process of fluctuating the electric dipole are created 

the electric fields of two forms. First, these are the electrical 

induction fields of emission, represented by equations (9.4), 

(9.5) and (9.6),connected with the acceleration of charge. In 

addition to this, around the being varied dipole are formed 

the electric fields of static dipole, which change in the time in 

connection with the fact that the distance between the charges 

it depends on time. These fields present the fields of the 

neighbor zone of dipole source. Specifically, energy of these 

field on the freely being varied dipole and it is expended on 

the emission. However, the summary value of field around 

this dipole at any moment of time defines as superposition 

fields on static dipole field on emissions. 

The laws (9.4), (9.5), (9.7)are the laws of the direct action, 

in which already there is neither magnetic field on nor vector 

potentials. I.e. those structures, by which there were the 

magnetic field and magnetic vector potential, are already 

taken and they no longer were necessary to us. 

Using Eq. (9.5) it is possible to obtain the laws of 

reflection and scattering both for the single charges and, for 

any quantity of them. If any charge or group of charges 
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undergo the action of external (strange) electric field, then 

such charges begin to accomplish a forced motion, and each 

of them emits electric fields in accordance with Eq.(9.5). The 

superposition of electrical field on, radiated by all charges, it 

is electrical wave. 

If on the charge acts the electric field, then the acceleration 

of charge is determined by the equation 

0 siny

e
a E t

m
ω′= − . 

Taking into account this Eq.(9.5) assumes the form 
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where the coefficient 
2
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4

e
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α
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=  can be named the 

coefficient of scattering (re-emission) single charge in the 

assigned direction, since it determines the ability of charge to 

re-emit the acting on it external electric field. 

The current wave of the displacement accompanies the 

wave of electric field: 
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If charge accomplishes its motion under the action of the 

electric field 
0

sinE E tω′ ′= , then bias current in the distant 

zone will be written down as 
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The sum wave, which presents the propagation of 

electrical field on (9.8) and bias currents (9.9), can be named 

electrocurent wave. In this current wave of displacement lags 

behind the wave of electric field to the angle equal 
2

π
. 

In parallel with the electrical waves it is possible to 

introduce magnetic waves, if we assume that 
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Introduced thus magnetic field is vortex. Comparing (9.9) 

and (9.10) we obtain: 
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Integrating this equation on the coordinate, we find the 

value of the magnetic field 
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Thus, Eqs.(9.8), (9.9) and (9.11) can be named the laws of 

electro-electrical induction, since. they give the direct 

coupling between the electric fields, applied to the charge, 

and by fields and by currents induced by this charge in its 

environment. Charge itself comes in the role of the 

transformer, which ensures this reradiation. The magnetic 

field, which can be calculated with the aid of Eq. (9.11), is 

directed normally both toward the electric field and toward 

the direction of propagation, and their relation at each point 

of the space is equal 

0

0 0

( , ) 1

( , )

y

z

E x t
Z

H x t c

µ
ε ε= = = , 

where Z  is wave drag of free space. 

The combination of electrical and magnetic wave is called 

the electromagnetic wave 

Wave drag determines the active power of losses on the 

single area, located normal to the direction of propagation of 

the wave: 

2

0

1

2 y
P ZE= . 

Therefore electrocurent wave, crossing this area, transfers 

through it the power, determined by the data by equation, 

which is located in accordance with Poynting theorem about 

the power flux of electromagnetic wave. Therefore, for 

finding all parameters, which characterize wave process, it is 

sufficient examination only of electrocurent wave and 

knowledge of the wave drag of space. In this case it is in no 

way compulsory to introduce this concept as magnetic field 

and its vector potential, although there is nothing illegal in 

this. In this setting of the equations, obtained for the 

electrical and magnetic field, they completely satisfy 

Helmholtz theorem. This theorem says, that any single-

valued and continuous vectorial field F
�

, which turns into 

zero at infinity, can be represented uniquely as the sum of the 

gradient of a certain scalar function of and rotor of a certain 

vector function, whose divergence is equal to zero: 

F grad rotCϕ= +
��

, 

0divC =
�

. 

Consequently, must exist clear separation fields on to the 

gradient and the vortex. It is evident that in the expressions, 

obtained for those induced field on, this separation is located. 

Electric fields have gradient nature, and magnetic is vortex 

field. 

Thus, the construction of electrodynamics should have 

been begun from the acknowledgement of the dependence of 

scalar potential on the speed. But nature very deeply hides its 

secrets, and in order to come to this simple conclusion, it was 

necessary to pass way by length almost into two centuries. 
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The grit, which so harmoniously were erected around the 

magnet poles, in a straight manner indicated the presence of 

some power field on potential nature, but to this they did not 

turn attention; therefore it turned out that all examined only 

tip of the iceberg, whose substantial part remained invisible 

of almost two hundred years. 

Taking into account entire aforesaid one should assume 

that at the basis of the overwhelming majority of static and 

dynamic phenomena at the electrodynamics only one law, 

which assumes the dependence of the scalar potential of 

charge on the speed, lies. From this law follows and static 

interaction of charges, and the laws of their power interaction 

in the case of mutual motion, and the emission laws and 

scattering, the phase aberration of electromagnetic waves, 

and the transverse Doppler effect. After entire aforesaid it is 

possible to remove construction forests, such as magnetic 

field and magnetic vector potential, which do not allow here 

already almost two hundred years to see the building of 

electrodynamics in entire its sublimity and beauty. 

Let us point out that one of the fundamental equations of 

induction (9.4) could be obtained directly from the Ampere 

law, still long before appeared Maxwell equations. The 

Ampere law, expressed in the vector form, determines 

magnetic field at the point 

3

1

4

Idl r
H

rπ
×= ∫
� �

�
 

where I  is current in the element dl
�

, r
�

 is vector, directed 

from dl
�

to the point , ,x y z . 

It is possible to show that 

3

[ ] 1dlr
grad dl

rr

 = × 
 

��
�

 

and, besides the fact that 

1 1dl
grad dl rot rot dl

r r r

  × = −       

�
� �

. 

but the rotor dl
�

 is equal to zero and therefore is final 

4 H

dl
H rot I rot A

rπ
 

= =  
 

∫
�

��

, 

where 
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rπ
 

=   
 

∫
�

�

. (9.12) 

The remarkable property of this expression is that that the 

vector potential depends from the distance to the observation 

point as 
1

r
. Specifically, this property makes it possible to 

obtain emission laws. 

Since I gv= , where g  linear charge, from Eq.(9.12) we 

obtain: 

4H

gv dl
A

rπ= ∫
�

�
. 

For the single charge e  this equation takes the form: 

4H

ev
A

rπ=
�

�
, 

and since 

A
E

t
µ ∂= −

∂

�
�

, 

that 
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v
g dl ga dlt

E
r r

µ µπ π

∂
∂= − = −∫ ∫

�
�

�  (9.13) 

where a  is acceleration of charge. 

This equation appears as follows for the single charge: 
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ea
E
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�

�
. (9.14) 

If we in Eqs. (9.13) and (9.14) consider that the potentials 

are extended with the final speed and to consider the delay 

r
t

c

 − 
 

 , and assuming , these equations will take the form: 

 
2

0

( ) ( )

4 4

r r
ga t dl ga t dl

c cE
r c r

µ π πε

− −
= − = −∫ ∫

� �

�
 (9.15) 
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−
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�
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. (9.16) 

where 

The equations (9.15) and (9.16) represent wave equations. 

Let us note that these equations - this solution of Maxwell 

equations, but in this case they are obtained directly from the 

Ampere law, not at all coming running to Maxwell equations. 

To there remains only present the question, why 

electrodynamics in its time is not banal by this method? 

10. Scalar-Vector Potential and the 

Formation of Electrical Fields on 

the Inductions Also of the 

Magnetic Vector Potential 

Earlier has already been indicated that solution of 

problems interactions of the moving charges in the classical 

electrodynamics are solved by the introduction of the 

magnetic field or vector potential, which are fields by 

mediators. To the moving or fixed charge action of force can 
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render only electric field. Therefore natural question arises, 

and it is not possible whether to establish the laws of direct 

action, passing fields the mediators, who would give answer 

about the direct interaction of the moving and fixed charges. 

This approach would immediately give answer, also, about 

sources and places of the application of force of action and 

reaction. Let us show that application of scalar- vector 

potential gives the possibility to establish the straight laws of 

the induction, when directly the properties of the moving 

charge without the participation of any auxiliary field on they 

give the possibility to calculate the electrical induction fields, 

generated by the moving charge. 

Let us assume that in the time t  voltage on line, changing 

according to the linear law, reached its nominal valueU  (Fig 

10). This period of time we will call the front of wave. In the 

long line this front occupies the section of the long
1

z . Let us 

explain, from where are taken those electric fields, which it 

forces the charges, located near the conductors of line, to 

move in the direction opposite to the direction of the motion 

of charges in line itself. In the section
1

z  proceeds the 

acceleration of charges from their zero speed (more to the 

right the section
1

z ) to the value of speed, determined by the 

equation 

2eU
v

m
= , 

where e  and m  are charge and the mass of current carriers,

U  is voltage drop across the section
1

z .Then the dependence 

of the speed of current carriers on the coordinate will take the 

form: 

 2 2
( )

e U
v z z

m z

∂=
∂

. (10.1) 

 

Fig. 10. Current wavefront, which is extended in the long line  

Since we accepted the linear dependence of stress from the 

time on incoming line, the equality occurs 

1

z

U U
E

z z

∂ = =
∂ , 

where
z

E  is field strength, which accelerates charges in the 

section
1

z . Consequently, Eq.(10.1) it is possible to rewrite 

2 2
( ) z

e
v z E z

m
= . 

Using for the value ofscalar- vector potential Eq. (10.4), let 

us calculate it as the function z  on a certain distancer from 

the line 

2

2 2
0 0

1 ( )
( ) 1 1

4 2 4
zeE ze v z e

z
r rc mc

ϕ π ε π ε
   = + = +   

  
. (10.2) 

For the record Eq.(10.2) are used only first two members 

of the expansion of hyperbolic cosine in series. 

Using the eqution E grad ϕ= − , and differentiating Eq. 

(10.2) on z , we obtain 
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2

04

z
z

e E
E

rmcπ ε
′ = − , (10.3) 

where
z

E ′ is the electric field, induced at a distance r from the 

conductor of line. Near E  there is a prime in connection 

with the fact that calculated field it moves along the 

conductor of line with the speed of light. This field acts on 

the charges, which surround line, forcing them to move in the 

opposite direction with respect to those charges, which move 

in the line. The acceleration of charge is determined by the 

equation z

z

eE
a

m
= . Taking this into account from (10.3) we 

obtain 

 2

0
4

z

z

ea
E

rcπ ε
′ = − . (10.4) 

Thus, the charges, accelerated in the section of the line 
1

z , 

induce at a distance r from this section the electric field, 

determined by Eq. (10.4). Direction of this field conversely 

to field, applied to the accelerated charges. Thus, is obtained 

the law of direct action, which indicates what electric fields 

generate around themselves the charges, accelerated in the 

conductor. This law can be called the law of electro-electrical 

induction, since it, passing fields mediators (magnetic field or 

vector potential), gives straight answer to what electric fields 

the moving electric charge generates around itself. This law 

gives also answer about the place of the application of force 

of interaction between the charges. Specifically, this equation 

we must consider as the fundamental law of induction, since 

specifically, it establishes the reason for the appearance of 

induction electrical field on around the moving charge. In 

what the difference between the proposed approach and that 

previously existing consists. Earlier we said that the moving 

charge generates vector potential, and the already changing 

vector potential generates electric field. The equation(10.4) 

gives the possibility to exclude this intermediate operation 

and to pass directly from the properties of the moving charge 

to the induction fields. Let us show that equation it follows 

from this and the introduced earlier phenomenologically 

vector potential, and, therefore, also magnetic field. Since the 

connection between the vector potential and the electric field 

is determined by Eq. (2.3), equality (10.4) it is possible to 

rewrite 

2

0
4

z H

z

v Ae
E

t trc
µ

π ε
∂ ∂′ = − = −
∂ ∂ , 

and further, integrating by the time, we obtain 
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4
z

H

ev
A

rπ=  

This equation corresponds to the determination of vector 

potential. It is now evident that the vector potential is the 

direct consequence of the dependence of the scalar potential 

of charge on the speed. The introduction also of vector 

potential and of magnetic field this is the useful mathematical 

device, which makes it possible to simplify the solution of 

number of electrodynamic problems, however, one should 

remember that by fundamentals the introduction of these 

fields on it appears scalar- vector potential. 

11. Kinetic Inductance and  

Plasmo-Like Media 

The dielectric and magnetic constant of material media are 

the fundamental parameters, which are used during writing of 

Maxwell equations. However, the kinetic inductance of 

charges occurs that there is still one not less fundamental 

material parameter, namely, which has not less important 

role, than dielectric and magnetic constant. Unfortunately, 

importance and fundamentality of the kinetic inductance of 

charges was not noted not only by ampere, Faraday, 

Maxwell, Heaviside and Hertz, but also by contemporary 

physicists, since it is present in all equations of 

electrodynamics implicitly. In the existing scientific literature 

there is only the irregular references about the kinetic 

inductance of charges and is not indicated its role and place 

in the electrodynamics of material media [20-21]. 

The most in detail physical essence of the kinetic 

inductance of charges in the application to the surface 

impedance of metallic surfaces is examined in work [22].In 

this work is introduced the concept of the surface kinetic and 

field inductance of 

2
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where
K

L ,
H

L are surface kinetic and field inductance, E
�

 is 

the tension of electric field, j ∗�  is the complexly conjugate 

value of current density, TH
�

 is tension of magnetic field, 

(0)TH
�

 is the value of the tension of magnetic field on the 

surface, ω  -is frequency of the applied field. These 

relationships are valid for the case of the arbitrary connection 

between the current and the field both in the normal metals 

and in the superconductors. They reveal the physical essence 

of surface kinetic and field inductance in this specific case. 

However, the role of this parameter in the electrodynamics of 

material media requires further refinements. 

The energy characteristics of electromagnetic waves are 

expressed as the dielectric and magnetic constant, using 

relationships for the specific energy of electrical and 

magnetic fields on: 

21

2EW Eε=  

21

2HW Hµ= . 

however with the propagation of electromagnetic waves in 

the material media in these media exist not only electrical 

and magnetic fields, into the motion are implicated also the 

charges, which accumulate kinetic energy. But the presence 

of this energy is not considered during the record of the total 

energy of electromagnetic waves in the material media. 

The equation of motion of electron takes the following 

form: 

 
dv

m eE
dt

=
�

�
, (11.1) 

where m  is mass electron, e  is electron charge, E
�

is tension 

of electric field, v
�

 is speed of the motion of charge. In the 

work [23] it is shown that this equation can be used also for 

describing the electron motion in the hot plasma. 

Using an expression for the current density 

 ,j nev=
� �

 (11.2) 

from(11.1) we obtain the current density of the conductivity 

of the free electrons 
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ne
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m
= ∫

��
. (11.3) 

in relationships (11.2) and (11.3) the value n  represents the 

specific density of charges. After introducing the designation 

 
2k

m
L

ne
=  (11.4) 

we find 

 
1

L

k

j E dt
L

= ∫
��

. (11.5) 

In this case the value of 
k

L  presents the specific kinetic 

inductance of charge carriers [18,19]. Its existence connected 

with the fact that charge, having a mass, possesses inertia 

properties. 

Pour on relationship (11.5) it will be written down for the 

case of harmonics: 

 0

1
cosL

k

j E t
L

ωω= −
��

. (11.6) 

For the mathematical description of electrodynamic 

processes the trigonometric functions will be here and 

throughout, instead of the complex quantities, used so that 
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would be well visible the phase relationships between the 

vectors, which represent electric fields and current densities. 

From relationship (11.5) and (11.6) is evident that presents 

inductive current, since. Its phase is late with respect to the 

tension of electric field to the angle. 

During the presence of summed current it is necessary to 

consider bias current 

0 0 0 cos
E

j E t
tε

∂ε ε ω∂= =
�

��
. 

Is evident that this current bears capacitive nature, since its 

phase anticipates the phase of the tension of electrical to the 

angle 
2

π
. Thus, summary current density will compose 

0

1

k

E
j E dt

t L

∂ε ∂∑ = + ∫
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��
, 

or 

 0 0

1
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k
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ωε ωωΣ
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. (11.7) 

Introducing the plasma frequency 0

0

1

kL
ω ε= , 

relationship (11.7) it is possible to rewrite 
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If in the conductor are ohmic losses, then total current 

density determines the relationship 

0

1

k

E
j E E dt

t L

∂σ ε ∂∑ = + + ∫
�

� ��
, 

whereσ  is conductivity of metal. 

12. Dielectrics 

In the existing literature there are no indications that the 

kinetic inductance of charge carriers plays some role in the 

electrodynamic processes in the dielectrics. However, this not 

thus [5-10]. This parameter in the electrodynamics of 

dielectrics plays not less important role, than in the 

electrodynamics of conductors. 

Let us examine the simplest case, when oscillating 

processes in atoms or molecules of dielectric obey the law of 

mechanical oscillator. 
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where
m

r
�

 is deviation of charges from the position of 

equilibrium, β  is coefficient of elasticity, which 

characterizes the elastic electrical binding forces of charges 

in the atoms and the molecules. Introducing the resonance 

frequency of the bound charges  

0 m

βω = , 

we obtain from (12.1): 
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is evident that in relationship (12.2) as the parameter is 

present the natural vibration frequency, into which enters the 

mass of charge. This speaks, that the inertia properties of the 

being varied charges will influence oscillating processes in 

the atoms and the molecules. 

Since the general current density consists of the bias 

current and conduction current 
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E
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, 

that, finding the speed of charge carriers in the dielectric as 

the derivative of their displacement through the coordinate 
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from relationship (12.2) we find 
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But the value 

2

m
L

kd
ne

=  

presents the kinetic inductance of the charges, entering the 

constitution of atom or molecules of dielectrics, when to 

consider charges free. Then relationship (12.3) can be 

rewritten 
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But, since the value 

0

1 2
pdL

kd

ω
ε

=  

represents the plasma frequency of charges in atoms and 

molecules of dielectric, if we consider these charges free, 

then relationship (12.4) takes the form: 
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Let us examine two limiting cases: 

1. If 0ω ω≪ , then from (12.5) we obtain 
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In this case the coefficient, confronting the derivative, does 

not depend on frequency, and it presents the static dielectric 

constant of dielectric. As we see, it depends on the natural 

frequency of oscillation of atoms or molecules and on plasma 

frequency. This result is intelligible. Frequency in this case 

proves to be such small that the inertia properties of charges 

it is possible not to consider, and bracketed expression in the 

right side of relationship (12.7) presents the static dielectric 

constant of dielectric. Hence immediately we have a 

prescription for creating the dielectrics with the high 

dielectric constant. In order to reach this, should be in the 

assigned volume of space packed a maximum quantity of 

molecules with maximally soft connections between the 

charges inside molecule itself. 

2. The case, when 0ω ω≫ , is exponential. then 
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and dielectric is converted in the plasma. The obtained 

relationship coincides with the case of plasma (12.8). 

Now it is possible to examine the question of why 

dielectric prism decomposes polychromatic light into 

monochromatic components or why rainbow is formed. So 

that this phenomenon would occur, it is necessary to have the 

frequency dispersion of the phase speed of electromagnetic 

waves in the medium in question. If we to relationship (12.5) 

add the Maxwell first equation, then we will obtain: 
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That we will obtain the wave equation 
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If one considers that  

0 0 2

1

c
µ ε =  

where c  is speed of light, then no longer will remain doubts 

about the fact that with the propagation of electromagnetic 

waves in the dielectrics the frequency dispersion of phase 

speed will be observed. In the formation of this dispersion it 

will participate immediately three, which do not depend on 

the frequency, physical quantities: the self-resonant 

frequency of atoms themselves or molecules, the plasma 

frequency of charges, if we consider it their free, and the 

dielectric constant of vacuum. 

13. Conclusion 

Electrodynamics is developed already more than 200 

years, in it still remained sufficiently many problems. For the 

duration entire of the period in the electrodynamics indicated 

primary attention was paid to the electrical and magnetic 

fields, and this concept as magnetic vector potential remained 

in the shadow. The carried out analysis showed that the 

magnetic vector potential is one of the most important 

concepts of classical electrodynamics, and magnetic field is 

only a consequence of this potential. But physical nature of 

this potential was not clear. The meaningful result of work is 

that which in them within the framework of Galilei 

conversions is shown that the scalar potential of charge 

depends on its relative speed, and this fact found its 

experimental confirmation. The obtained results change the 

ideological basis of classical electrodynamics, indicating that 

the substantial part of the observed in the electrodynamics 

dynamic phenomena, this by the consequences of this 

dependence. Certainly, the adoption of this concept is critical 

step. Indeed the main parameter of charge are those energy 

characteristics, which it possesses and how it influences the 

surrounding charges not only in the static position, but also 

during its motion. The dependence of scalar potential on the 

speed leads to the fact that in its environments are generated 

the electric fields, to reverse fields, that accelerate charge 

itself. Such dynamic properties of charge allow instead of 

two symmetrical laws of magnetoelectric and 

electromagnetic induction to introduce one law of electro-

electrical induction, which is the fundamental law of 

induction. This method gives the possibility to directly solve 

all problems of induction and emission, without resorting to 

the application of such pour on mediators as vector potential 

and magnetic field. This approach makes it possible to 

explain the origin of the forces of interaction between the 

current carrying systems. 

Up to now in the classical electrodynamics existed two not 

connected with each other of division. From one side this of 

Maxwell's equation, and from which follow wave equations 

for the electromagnetic pour on, while from other side this of 

the relationships, which determine power interaction of the 

current carrying systems. For explaining this phenomenon 

the postulate about the Lorentz force was introduced. 

Introduction to the dependence of the scalar potential of 

charge on the speed mutually connects these with those not 

connected divisions, and classical electrodynamics takes the 

form of the ordered united science, which has united 

ideological basis. 

In the article is carried out the analysis of the work of 

different of the schematics of the unipolar generators, among 

which there are diagrams, the principle of operation of 

which, until now, did not yield to explanation. The number of 
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such diagrams includes the construction of the generator, 

whose cylindrical magnet, magnetized in the end direction, 

revolves together with the conducting disk. Postulate about 

the Lorentz force, whom is used for explaining the work of 

unipolar generators, does not give the possibility to explain 

the operating principle of this generator. It is shown that the 

concept of scalar-vector potential, developed by the author, 

gives the possibility to explain the operating principle of all 

existing types of unipolar generators. Physical explanation of 

Lorentz force in the concept of scalar- vector potential is 

given. 

The special theory of relativity made possible to explain 

the phase aberration of electromagnetic waves and transverse 

Doppler effect. Furthermore with its aid are obtained 

conversions pour on upon transfer of one inertial system to 

another, what it is not possible to obtain within the 

framework classical electrodynamics. However, there are the 

physical phenomena, which SR do not explain. They include 

the formation of electric pulse with nuclear explosions [24], 

and also the electrization of the superconductive windings 

and tori during the introduction in them of direct current [25-

28]. The concept of scalar-vector potential these phenomena 

explains. The advantage of the proposed approach is the fact 

that the concept of scalar-vector potential is obtained not on 

the basis of postulates, but with the use of experimental laws 

of induction. Let us give quotation from the monograph of 

well-known specialist in tensor analysis [29]: “The theory of 

relativity arose as a result the prolonged accumulation of the 

experimental material, which led to the deep conversion of 

our physical ideas about the forms of material and motion. 

And other physical quantities to the newly open experimental 

facts it was revealed after the whole series of the attempts to 

adapt previous ideas about the space, time that for these 

purposes it is necessary to reconstruct all these concepts 

radically. This task was executed in basic a. By Einstein in 

1905. (special theory of relativity) and in 1915. (general 

theory of relativity). In other the task was executed was only 

in the sense that given the ordered formal mathematical 

description of new state of affairs. The task of the deep, 

really physical substantiation of this mathematical diagram 

still stands before physics”. 

The examination showed that this parameter as the kinetic 

inductance of charges characterizes electromagnetic 

processes in the conductors and the dielectrics and has the 

same fundamental value as the dielectric and magnetic 

constant of these media. Unfortunately, this important 

circumstance is not noted not only in the existing scientific 

literature, but also in the works of Maxwell. 
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