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Abstract 

 
      By all is well known this phenomenon as rainbow. To any specialist in 

the electrodynamics it is clear that the appearance of rainbow is connected 

with the dependence on the frequency of the phase speed of the 

electromagnetic waves, passing through the drops of rain. Since water is 

dielectric, with the explanation of this phenomenon J. Heaviside R. Vul 

assumed that this dispersion was connected with the frequency dispersion 

(dependence on the frequency) of the dielectric constant of water. Since 

then this point of view is ruling . However, this approach is physical and 

methodological error, that also is shown in this article. This error occurred 

because of the fact that during the record of current in the material media 

they were entangled integral and the derivative of the harmonic function, 

which take the identical form and are characterized by only signs. 

The keywords: plasma, dielectric, dielectric constant, the dispersion of 

dielectric constant, harmonic function.  
 

1. Introduction 
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 By all is well known this phenomenon as rainbow. To any specialist in 

the electrodynamics it is clear that the appearance of rainbow is 

connected with the dependence on the frequency of the phase speed of 

the electromagnetic waves, passing through the drops of rain. Since 

water is dielectric, with the explanation of this phenomenon J. Heaviside 

R. Vul assumed that this dispersion was connected with the frequency 

dispersion (dependence on the frequency) of the dielectric constant of 

water. Since then this point of view is ruling [1-6]. 

      However very creator of the fundamental equations of 

electrodynamics Maxwell considered that these parameters on frequency 

do not depend, but they are fundamental constants. As the idea of the 

dispersion of dielectric and magnetic constant was born, and what way it 

was past, sufficiently colorfully characterizes quotation from the 

monograph of well well-known specialists in the field of physics of 

plasma [1]: “J. itself. Maxwell with the formulation of the equations of 

the electrodynamics of material media considered that the dielectric and 

magnetic constants are the constants (for this reason they long time they 

were considered as the constants). It is considerably later, already at the 

beginning of this century with the explanation of the optical dispersion 

phenomena (in particular the phenomenon of rainbow)  J. Heaviside R. 

Vul showed that the dielectric and magnetic constants are the functions 

of frequency. But very recently, in the middle of the 50's, physics they 

came to the conclusion that these values depend not only on frequency, 

but also on the wave vector. On the essence, this was the radical breaking 

of the existing ideas. It was how a serious, is characterized the case, 

which occurred at the seminar L. D. Landau into 1954  during the report 

of A. I. Akhiezer on this theme of Landau suddenly exclaimed, after 

smashing the speaker: ” This is delirium, since the refractive index 
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cannot be the function of refractive index”. Note that this said L. D. 

Landau - one of the outstanding physicists of our time” (end of the 

quotation). 

      It is incomprehensible from the given quotation, that precisely had in 

the form Landau. However, its subsequent publications speak, that it 

accepted this concept [2]. 

    That rights there was Maxwell, who considered that the dielectric and 

magnetic constant of material media on frequency they do not depend.  

However, in a number of fundamental works on electrodynamics [2-6] 

are committed conceptual, systematic and physical errors, as a result of 

which in physics they penetrated and solidly in it were fastened such 

metaphysical concepts as the frequency dispersion of the dielectric 

constant of material media and, in particular, plasma. The propagation of 

this concept to the dielectrics led to the fact that all began to consider that 

also the dielectric constant of dielectrics also depends on frequency. 

These physical errors penetrated in all spheres of physics and 

technology. They so solidly took root in the consciousness of specialists, 

that many, until now, cannot believe in the fact that the dielectric 

constant of plasma is equal to the dielectric constant of vacuum, but the 

dispersion of the dielectric constant of dielectrics is absent. There is the 

publications of such well-known scholars as the Drudes, Vull, Heaviside, 

Landau, Ginsburg, Akhiezer, Tamm [1-6], where it is indicated that the 

dielectric constant of plasma and dielectrics depends on frequency. This 

is a systematic and physical error. This systematic and physical error 

became possible for that reason, that without the proper understanding of 

physics of the proceeding processes occurred the substitution of physical 

concepts by mathematical symbols, which appropriated physical, but are 

more accurate metaphysical, designations, which do not correspond to 

their physical sense. But if we examine the purely mathematical point of 

view, then Landau, and following it and other authors entangled integral 
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and derivative of harmonic function, since they forgot, that the derivative 

and integral in this case take the identical form, and they are 

characterized by only signs.  

 

2  Plasmo-like media  
 

      By plasma media we will understand such, in which the charges can 

move without the losses. To such media in the first approximation, can 

be related the superconductors, free electrons or ions in the vacuum 

(subsequently conductors). In the absence magnetic field in the media 

indicated equation of motion for the electrons takes the form: 

  
dvm eEdt 
 

,                                     (2.1) 

where m  is the mass electron, e is the electron charge, E


is the tension 

of electric field, v  is the speed of the motion of charge. 

     In the work [6] it is shown that this equation can be used also for 

describing the electron motion in the hot plasma. Therefore it can be 

disseminated also to this case. 

Using an expression for the current density 

,j nev
 

                                        (2.2) 

from (2.1) we obtain the current density of the conductivity 
2

L
nej E dtm 


.                                (2.3) 

In relationship (2.2) and (2.3) the value n  represents electron density. 

After introducing the designation  

2k
mL

ne
 ,                                        (2.4) 

we find 
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1
L

k
j E dtL 


.                                     (2.5) 

In this case the value kL  presents the specific kinetic inductance of 

charge carriers [7-11]. Its existence connected with the fact that charge, 

having a mass, possesses inertia properties. Field on 0 sinE E t
 

 

relationship (2.5) it will be written down for the case of harmonics: 

0
1 cosL

k
j E tL 


 


.                       (2.6) 

For the mathematical description of electrodynamic processes the 

trigonometric functions will be here and throughout, instead of the 

complex quantities, used so that would be well visible the phase 

relationships between the vectors, which represent electric fields and 

current densities. 

      From relationship (2.5) and (2.6) is evident that Lj


 presents 

inductive current, since. its phase is late with respect to the tension of 

electric field to the angle  
2


. 

      If charges are located in the vacuum, then during the presence of 

summed current it is necessary to consider bias current 

0 0 0 cosEj E tt


  


 



. 

Is evident that this current bears capacitive nature, since. its phase 

anticipates the phase of the tension of electrical field to the angle 
2


. 

Thus, summary current density will compose [8-10] 

0
1

k

Ej E dtt L

   



, 
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or 

0 0
1 cos

k
j E tL 



 
  
 


.                         (2.7) 

      If electrons are located in the material medium, then should be 

considered the presence of the positively charged ions. However, with 

the examination of the properties of such media in the rapidly changing 

fields, in connection with the fact that the mass of ions is considerably 

more than the mass of electrons, their presence usually is not considered. 

      In relationship (2.7) the value, which stands in the brackets, presents 

summary susceptance of this medium   and it consists it, in turn, of the 

the capacitive C  and by the inductive L  the conductivity  

0
1

C L
kL   

     . 

Relationship (2.7) can be rewritten and differently: 
2
0

0 021 cosj E t
 



 
  

 


, 

where  0
0

1

kL


  is plasma frequency. 

And large temptation here appears to name the value 
2
0

0 02 2

1*( ) 1
kL


   

 
 

    
 

, 

by the depending on the frequency dielectric constant of plasma, that also 

is made in all existing works on physics of plasma. But this is incorrect, 

since. this mathematical symbol is the composite parameter, into which 

simultaneously enters the dielectric constant of vacuum and the specific 

kinetic inductance of charges. It is clear from the previous examination 

that the parameter * ( )   gives the possibility in one coefficient to 
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combine derivative and the integral of harmonic function, since they are 

characterized by only signs and thus impression is created, that the 

dielectric constant of plasma depends on frequency. It should be noted 

that a similar error is perfected by such well-known physicists as 

Akhiezer, Tamm, Ginsburg [3-5]. 

      This happened still and because, beginning to examine this question, 

Landau introduced the determinations of dielectric constant only for the 

static fields on, but he did not introduce this determination for the 

variables fields on. Let us introduce this determination. 

      If we examine any medium, including plasma, then current density 

(subsequently we will in abbreviated form speak simply current) it will 

be determined by three components, which depend on the electric field. 

The current of resistance losses there will be sinphase to electric field. 

The permittance current, determined by first-order derivative of electric 

field from the time, will anticipate the tension of electric field on the 

phase to 2


. This current is called bias current.  The conduction current, 

determined by integral of the electric field from the time, will lag behind 

the electric field on the phase to 2


.  All three components of current 

indicated will enter into the second equation of Maxwell and others 

components of currents be it cannot. Moreover all these three 

components of currents will be present in any nonmagnetic regions, in 

which there are losses.  Therefore it is completely natural, the dielectric 

constant of any medium to define as the coefficient, confronting that 

term, which is determined by the derivative of electric field by the time 

in the second equation of Maxwell. In this case one should consider that 

the dielectric constant cannot be negative value. This connected with the 

fact that through this parameter is determined energy of electrical fields 

on, which can be only positive. 
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     Without having introduced this clear determination of dielectric 

constant, Landau begins the examination of the behavior of plasma in the 

ac fields. In this case is not separated separately the bias current and 

conduction current, one of which is defined by derivative, but by another 

integral, is written as united bias current. It makes this error for that 

reason, that in the case of harmonic oscillations the form of the function, 

which determine and derivative and integral, is identical, and they are 

characterized by only sign. Performing this operation, Landau does not 

understand, that in the case of harmonic electrical fields on in the plasma 

there exist two different currents, one of which is bias current, and it is 

determined by the dielectric constant of vacuum and derivative of 

electric field. Another current is conduction current and is determined by 

integral of the electric field. These two currents are antiphase. But since 

both currents depend on frequency, moreover one of them depends on 

frequency linearly, and another it is inversely proportional to frequency, 

between them competition occurs. The conduction current predominates 

with the low frequencies, the bias current, on the contrary, predominates 

with the high. However, in the case of the equality of these currents, 

which occurs at the plasma frequency, occurs current resonance. 

     Let us emphasize that from a mathematical point of view to reach in 

the manner that it entered to Landau, it is possible, but in this case is lost 

the integration constant, which is necessary to account for initial 

conditions during the solution of the equation, which determines current 

density in the material medium. 

The obviousness of the committed error is visible based on other 

example. 

      Relationship (2.7) can be rewritten and differently: 
2

2
0

0

1
cosj E tL







 
 

  

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and to introduce another mathematical symbol 

22
0

2
0

*( )
1

1

k k

k

L L
L

L


 


 
 

 
 

  . 

In this case also appears temptation to name this bending coefficient on 

the frequency kinetic inductance. 

     Thus, it is possible to write down: 

0*( ) cosj E t   


, 

or 

0
1 cos* ( )j E tL 

   


 . 

But this altogether only the symbolic mathematical record of one and the 

same relationship (2.7). Both equations are equivalent. But view neither 

* ( )  nor *( )L   by dielectric constant or inductance are from a 

physical point. The physical sense of their names consists of the 

following: 

*( ) X
 


  , 

i.e. * ( )   presents summary susceptance of medium, divided into the 

frequency, and 

1*( )
X

kL 


  

 it represents the reciprocal value of the work of frequency and 

susceptance of medium. 

   As it is necessary to enter, if at our disposal are values  * ( )   and 

*( )L  , and we should calculate total specific energy? Natural to 

substitute these values in the formulas, which determine energy of 

electrical fields 
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2
0 0

1
2EW E  

and kinetic energy of charge carriers 

2
0

1
2j kW L j ,                                      (2.8) 

is cannot simply because these parameters are neither dielectric constant 

nor inductance. It is not difficult to show that in this case the total 

specific energy can be obtained from the relationship  

  2
0

*( )1
2

d
W Ed

 
   ,                        (2.9) 

from where we obtain 

2 2 2 2
0 0 0 0 0 02

1 1 1 1 1
2 2 2 2 k

k
W E E E L j

L
 

      . 

We will obtain the same result, after using the formula 

2
0

1
*( )1

2
k

d L
W Ed

 


 
 
  . 

 

The given relationships show that the specific energy consists of 

potential energy of electrical fields on and to kinetic energy of charge 

carriers. 

      With the examination of any media by our final task appears the 

presence of wave equation. In this case this problem is already 

practically solved.  Maxwell's equations for this case take the form: 

0

0

,

1 ,
k

Hrot E t

Erot H E dtt L







 

  





 

                      (2.10)

                         
where 0 , 0  are dielectric and magnetic constant of vacuum. 
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The system of equations (2.10) completely describes all properties of 

nondissipative conductors. From it we obtain 
2

0
0 0 2 0

k

Hrot rot H HLt
 


  


 

               (2.11)
              

 

For the case fields on, time-independent, equation (2.11) passes into the 

equation of London 

0 0
k

rot rot H HL


 
 

 , 

where 2

0
L

kL



  is London depth of penetration. 

      Thus, it is possible to conclude that the equations of London being a 

special case of equation (2.11), and do not consider bias currents on 

medium.  Therefore they do not give the possibility to obtain the wave 

equations, which describe the processes of the propagation of 

electromagnetic waves in the superconductors. 

      Fields on wave equation in this case it appears as follows for the 

electrical: 
2

0
0 0 2 0

k

Erot rot E ELt
 


  


 

. 

For constant electrical fields on it is possible to write down 

0 0
k

rot rot E EL


 
 

.  

Consequently, dc fields penetrate the superconductor in the same manner 

as for magnetic, diminishing exponentially. However, the density of 

current in this case grows according to the linear law  

1
L

k
j E dtL 


. 
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 The carried out examination showed that the dielectric constant of this 

medium was equal to the dielectric constant of vacuum and this 

permeability on frequency does not depend. The accumulation of 

potential energy is obliged to this parameter. Furthermore, this medium 

is characterized still and the kinetic inductance of charge carriers and this 

parameter determines the kinetic energy, accumulated on medium. 

 thus, are obtained all necessary given, which characterize the process of 

the propagation of electromagnetic waves in conducting media 

examined. However, in contrast to the conventional procedure [2-4] with 

this examination nowhere was introduced polarization vector, but as the 

basis of examination assumed equation of motion and in this case in the 

second equation of Maxwell are extracted all components of current 

densities explicitly. 

      In radio engineering exists the simple method of the idea of radio-

technical elements with the aid of the equivalent diagrams. This method 

is very visual and gives the possibility to present in the form such 

diagrams elements both with that concentrated and with the distributed 

parameters.  The use of this method will make it possible better to 

understand, why were committed such significant physical errors during 

the introduction of the concept of that depending on the frequency 

dielectric constant. 

     In order to show that the single volume of conductor or plasma 

according to its electrodynamic characteristics is equivalent to parallel 

resonant circuit with the lumped parameters, let us examine parallel 

resonant circuit. The connection between the voltage  U , applied to the 

outline, and the summed current  I , which flows through this chain, 

takes the form  

1
C L

dUI I I C U dtdt L      , 
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where  C
dUI C dt  is current, which flows through the capacity, and 

1
LI U dtL   is current, which flows through the inductance. 

     For the case of the harmonic stress of 0 sinU U t  we obtain 

0
1 cosI C U tL 


   
 

                   (2.12) 

In relationship (2.12) the value, which stands in the brackets, presents 

summary susceptance   this medium  and it consists it, in turn, of the 

the capacitive C  and by the inductive L  the conductivity  

1
C L C L   

     . 

In this case relationship (2.12) can be rewritten as follows: 
2
0

021 cosI C U t
 



 
  

 
, 

where  2
0

1
LC   is the resonance frequency of parallel circuit. 

And here, just as in the case of conductors, appears temptation, to name 

the value 
2
0
2 2

1*( ) 1C C C
L




 
 

    
 

                    (2.13)
                

 

by the depending on the frequency capacity.  Conducting this symbol it 

is permissible from a mathematical point of view; however, inadmissible 

is awarding to it the proposed name, since. this parameter of no relation 

to the true capacity has and includes in itself simultaneously and capacity 

and the inductance of outline, which do not depend on frequency. 

      Is accurate another point of view. Relationship (2.12) can be 

rewritten and differently: 
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2

2
0

0

1
cosI U tL







 
 

   , 

and to consider that the chain in question not at all has capacities, and 

consists only of the inductance depending on the frequency 

22

2
0

*( )
1

1

L LL
LC






 
 

 
 

                       (2.14) 

But,  just as * ( )C  , the value of *( )L   cannot be called inductance, 

since this is the also composite parameter, which includes simultaneously 

capacity and inductance, which do not depend on frequency. 

     Using expressions (2.13) and (2.14), let us write down: 

0*( ) cosI C U t    ,                      (2.15) 

or 

0
1 cos*( )I U tL 

    .                     (2.16) 

The relationship (2.15) and (2.16) are equivalent, and separately 

mathematically completely is characterized the chain examined. But 

view neither * ( )C  nor *( )L   by capacity and inductance are from a 

physical point, although they have the same dimensionality. The physical 

sense of their names consists of the following: 

*( ) XC 



 , 

i.e. * ( )C   presents the relation of susceptance of this chain and 

frequency, and 

1*( )
X

L 


 , 

it is the reciprocal value of the work of summary susceptance and 

frequency. 



15 
 

      Accumulated in the capacity and the inductance energy, is 

determined from the relationships 

2
0

1
2CW CU                                      (2.17)               

2
0

1
2LW LI .                                     (2.18)

 
 

 How one should enter for enumerating the energy, which was 

accumulated in the outline, if at our disposal are * ( )C   and *( )L  ? 

Certainly, to put these relationships in formulas (2.17) and (2.18) cannot 

for that reason, that these values can be both the positive and negative, 

and the energy, accumulated in the capacity and the inductance, is 

always positive. But if we for these purposes use ourselves the 

parameters indicated, then it is not difficult to show that the summary 

energy, accumulated in the outline, is determined by the expressions: 

2
0

1
2

XdW Ud

  ,                         (2.19)       

or 

  2
0

*( )1
2

d C
W Ud

 
  ,                     (2.20)     

 
 

or 

2
0

1
*( )1

2

d L
W Ud

 


 
 
  .                   (2.21)                  

If we paint equations (2.19) or (2.20) and (2.21), then we will obtain 

identical result, namely: 

2 2
0 0

1 1 ,2 2W CU LI    

where 0U  is amplitude of voltage  on the capacity, and 0I is amplitude of 

the current, which flows through the inductance. 
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      If we compare the relationships, obtained for the parallel resonant 

circuit and for the conductors, then it is possible to see that they are 

identical, if we make 0 0E U , 0 0j I , 0 C   and kL L . 

Thus, the single volume of conductor, with the uniform distribution of 

electrical fields on and current densities in it, it is equivalent to parallel 

resonant circuit with the lumped parameters indicated. In this case the 

capacity of this outline is numerically equal to the dielectric constant of 

vacuum, and inductance is equal to the specific kinetic inductance of 

charges. 

       Now let us visualize this situation. In the audience, where are located 

specialists, who know radio engineering and of mathematics, comes 

instructor and he begins to prove, that there are in nature of no capacities 

and inductances, and there is only depending on the frequency capacity 

and that just she presents parallel resonant circuit. Or, on the contrary, 

that parallel resonant circuit this is the depending on the frequency 

inductance. View of mathematics will agree from this point. However, 

radio engineering they will calculate lecturer by man with the very 

limited knowledge. Specifically, in this position proved to be now those 

scientists and the specialists, who introduced into physics the frequency 

dispersion of dielectric constant. 

      Thus, are obtained all necessary given, which characterize the 

process of the propagation of electromagnetic waves in the media 

examined, and it is also shown that in the quasi-static regime the 

electrodynamic processes in the conductors are similar to processes in 

the parallel resonant circuit with the lumped parameters. However, in 

contrast to the conventional procedure [2-5] with this examination 

nowhere was introduced polarization vector, but as the basis of 

examination assumed equation of motion and in this case in the second 
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equation of Maxwell are extracted all components of current densities 

explicitly. 

     Based on the example of work [2] let us examine a question about 

how similar problems, when the concept of polarization vector is 

introduced are solved for their solution. Paragraph 59 of this work, where 

this question is examined, it begins with the words: “We pass now to the 

study of the most important question about the rapidly changing electric 

fields, whose frequencies are unconfined by the condition of smallness in 

comparison with the frequencies, characteristic for establishing the 

electrical and magnetic polarization of substance” (end of the quotation). 

These words mean that that region of the frequencies, where, in 

connection with the presence of the inertia properties of charge carriers, 

the polarization of substance will not reach its static values, is examined. 

With the further consideration of a question is done the conclusion that 

“in any variable field, including with the presence of dispersion, the 

polarization vector 0P D E 
  

 (here and throughout all formulas 

cited they are written in the system  SI) preserves its physical sense of 

the electric moment of the unit volume of substance” (end of the 

quotation). Let us give the still one quotation: “It proves to be possible to 

establish (unimportantly - metals or dielectrics) maximum form of the 

function ( )  with the high frequencies valid for any bodies. 

Specifically, the field frequency must be great in comparison with “the 

frequencies” of the motion of all (or, at least, majority) electrons in the 

atoms of this substance. With the observance of this condition it is 

possible with the calculation of the polarization of substance to consider 

electrons as free, disregarding their interaction with each other and with 

the atomic nuclei” (end of the quotation).  

      Further, as this is done and in this work, is written the equation of 

motion of free electron in the ac field 
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dvm eE
dt


 

, 

from where its displacement is located 

2
eEr

m





. 

Then is indicated that the polarization P


 is a dipole moment of unit 

volume and the obtained displacement is put into the polarization  
2

2
ne EP ner
m

 


 
. 

In this case point charge is examined, and this operation indicates the 

introduction of electrical dipole moment for two point charges with the 

opposite signs, located at a distance r  

ep er
 

, 

where the vector r is directed from the negative charge toward the 

positive charge. This step causes bewilderment, since the point electron 

is examined, and in order to speak about the electrical dipole moment, it 

is necessary to have in this medium for each electron another charge of 

opposite sign, referred from it to the distance r .  In this case is 

examined the gas of free electrons, in which there are no charges of 

opposite signs. Further follows the standard procedure, when introduced 

thus illegal polarization vector is introduced into the dielectric constant  

2

20 0 02
0

11
k

ne ED E P E E
Lm

  
 

       
 


    

 , 

and since plasma frequency is determined by the relationship 

2

0

1
p

kL



 , 

the vector of the induction immediately is written  
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2

20 1 pD E





 
  

 
 

 
. 

With this approach it turns out that constant of proportionality 

2

20( ) 1 p
  



 
  

 
 

, 

between the electric field and the electrical induction, illegally named 

dielectric constant, depends on frequency. 

       Precisely this approach led to the fact that all began to consider that 

the value, which stands in this relationship before the vector of electric 

field, is the dielectric constant depending on the frequency, and electrical 

induction also depends on frequency.  And this it is discussed in all, 

without the exception, fundamental works on the electrodynamics of 

material media [2-6].  

      But, as it was shown above this parameter it is not dielectric constant, 

but presents summary susceptance of medium, divided into the 

frequency. Thus, traditional approach to the solution of this problem 

from a physical point of view is erroneous, although formally this 

approach is permitted from a mathematical point of view, with this du 

not  to consider initial conditions with the calculation of integral in the 

relationships, which determine conduction current.  

     Further into §61 of work [2] is examined a question about the energy 

of electrical and magnetic field in the media, which possess by the so-

called dispersion. In this case is done the conclusion that relationship for 

the energy of such fields  

 2 2
0 0

1
2

W E H   ,                     (2.22)         

that making precise thermodynamic sense in the usual media, with the 

presence of dispersion so interpreted be cannot. These words mean that 
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the knowledge of real electrical and magnetic fields on  medium with the 

dispersion insufficiently for determining the difference in the internal 

energy per unit of volume of substance in the presence fields on in their 

absence. After such statements is given the formula, which gives correct 

result for enumerating the specific energy of electrical and magnetic 

fields on when the dispersion present  

   2 2
0 0

( ) ( )1 1
2 2

d d
W E H

d d
   
 

               (2.23)
                 

 

But if we compare the first part of the expression in the right side of 

relationship (2.23) with relationship (2.9), then it is evident that they 

coincide. This means that in relationship (2.23) this term presents the 

total energy, which includes not only potential energy of electrical fields 

on, but also kinetic energy of the moving charges. On what base is 

recorded last term in the relationship (2.23) not at all clearly. 

 Therefore conclusion about the impossibility of the interpretation of 

formula (2.22), as the internal energy of electrical and magnetic fields on 

in the media with the dispersion it is correct. However, this circumstance 

consists not in the fact that this interpretation in such media is generally 

impossible. It consists in the fact that for the definition of the value of 

specific energy as the thermodynamic parameter in this case is necessary 

to correctly calculate this energy, taking into account not only electric 

field, which accumulates potential energy, but also current of the 

conduction electrons, which accumulate the kinetic energy of charges 

(2.8). The conclusion, which now can be made, consists in the fact that, 

introducing into the custom some mathematical symbols, without 

understanding of their true physical sense, and, all the more, the 

awarding to these symbols of physical designations unusual to them, it is 

possible in the final analysis to lead to the significant errors, that also 

occurred in the work [2].  
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3. Transverse plasma resonance  
 

      Now let us show how the poor understanding of physics of processes 

in conducting media it led to the fact that proved to be unnoticed the 

interesting physical phenomenon transverse plasma resonance in the 

nonmagnetized plasma, which can have important technical appendices.  

This phenomenon can have important technical appendices [13]. 

      Is known that the plasma resonance is longitudinal. But longitudinal 

resonance cannot emit transverse electromagnetic waves. However, with 

the explosions of nuclear charges, as a result of which is formed very hot 

plasma, occurs electromagnetic radiation in the very wide frequency 

band, up to the long-wave radio-frequency band. Today are not known 

those of the physical mechanisms, which could explain the appearance of 

this emission.  On existence in the nonmagnetized plasma of any other 

resonances, except Langmuir, earlier known it was not, but it occurs that 

in the confined plasma the transverse resonance can exist, and the 

frequency of this resonance coincides with the frequency of Langmuir 

resonance, i.e., these resonance are degenerate. Specifically, this 

resonance can be the reason for radio-wave emission with the explosions 

of nuclear charges, since the cloud of explosion in the process of its 

development for a while remains limited.  For explaining the conditions 

for the excitation of this resonance let us examine the long line, which 

consists of two ideally conducting planes, as shown in Fig 1. 

 

 



22 
 

 
 

Fig. 1.  The two-wire circuit, which consists of two ideally conducting 

planes. 

 

     Linear capacity and inductance of this line without taking into 

account edge effects they are determined by the relationships [8,9]: 

0 0
bC a     and  0 0

aL b   

Therefore with an increase in the length of line its total capacitance  

0
bC za   and summary inductance 0

aL zb   increase 

proportional to its length. 

       If we into the extended line place the plasma, charge carriers in 

which can move without the losses, and in the transverse direction pass 

through the plasma the current  I , then charges, moving with the definite 

speed, will accumulate kinetic energy. Let us note that here are not 

examined technical questions, as and it is possible confined plasma 

between the planes of line how. In this case only fundamental questions, 

which are concerned transverse plasma resonance in the nonmagnetic 

plasma, are examined. 

     Since the transverse current density in this line is determined by the 

relationship 

,Ij nevbz   
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that summary kinetic energy of the moving charges can be written down 

2 2
2 2

1 1
2 2k

m m aW abzj Ibzne ne   .           (3.1)  
 
 

 

 

 
 

Fig. 2: а is the equivalent the schematic of the section of the two-wire 

circuit: 

б is the equivalent the schematic of the section of the two-wire circuit, 

filled with nondissipative plasma; 
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в  is  the equivalent the schematic of the section of the two-wire circuit, 

filled with dissipative plasma. 

 

Relationship (3.1) connects the kinetic energy, accumulated in the line, 

with the square of current; therefore the coefficient, which stands in the 

right side of this relationship before the square of current, is the summary 

kinetic inductance of line. 

2k
m aL bzne                                         (3.2) 

Thus, the value 

2k
mL

ne
                                           (3.3)

                                                    
presents the specific kinetic inductance of charges.  This value was 

already previously introduced by another method (see relationship (2.4)). 

Relationship (3.3) is obtained for the case of the direct current, when 

current distribution is uniform. 

      Subsequently for the larger clarity of the obtained results, together 

with their mathematical idea, we will use the method of equivalent 

diagrams. The section, the lines examined, long  dz  can be represented 

in the form the equivalent diagram, shown in Fig. 2 (a). 

 From relationship (7.2) is evident that in contrast to C  and L  the 

value of kL   with an increase in z  does not increase, but it decreases. 

Connected this with the fact that with an increase in z  a quantity of 

parallel-connected inductive elements grows. 

     The equivalent the schematic of the section of the line, filled with 

nondissipative plasma, it is shown in Fig. 2 б . Line itself in this case will 

be equivalent to parallel circuit with the lumped parameters: 
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0 ,

,k

bzC a
L a

L bz





 

in series with which is connected the inductance 

0
adz
b

 . 

But if we calculate the resonance frequency of this outline, then it will 

seem that this frequency generally not on what sizes depends, actually: 
2

2

0 0

1 1

k

ne
CL L m  

   . 

Is obtained the very interesting result, which speaks, that the resonance 

frequency macroscopic of the resonator examined does not depend on its 

sizes. Impression can be created, that this is plasma resonance, since. the 

obtained value of resonance frequency exactly corresponds to the value 

of this resonance. But it is known that the plasma resonance characterizes 

longitudinal waves in the long line they, while occur transverse waves. In 

the case examined the value of the phase speed in the direction z  is 

equal to infinity and the wave vector  0k 


.  

      This result corresponds to the solution of system of equations (2.10) 

for the line with the assigned configuration. In this case the wave number 

is determined by the relationship: 
22

2
2 21zk

c




 
  
 
 

 ,                          (3.4) 

and the group and phase speeds 
2

2 2
21gv c 



 
  
 
 

,                            (3.5)       
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2
2

2

21
F

cv





 
 
 
 

 ,                            (3.6) 

where  
1/ 2

0 0

1c
 

   
 

is speed of light in the vacuum. 

      For the present instance the phase speed of electromagnetic wave is 

equal to infinity, which corresponds to transverse resonance at the 

plasma frequency.  Consequently, at each moment of time fields on 

distribution and currents in this line uniform and it does not depend on 

the coordinate z , but current in the planes of line in the direction of  is 

absent. This, from one side, it means that the inductance  L  will not 

have effects on electrodynamic processes in this line, but instead of the 

conducting planes can be used any planes or devices, which limit plasma 

on top and from below.  

      From relationships (3.4), (3.5) and (3.6) is evident that at the point of 

p   occurs the transverse resonance with the infinite quality. With 

the presence of losses in the resonator will occur the damping, and in the 

long line in this case  0zk  , and in the line will be extended the 

damped transverse wave, the direction of propagation of which will be 

normal to the direction of the motion of charges. It should be noted that 

the fact of existence of this resonance is not described by other authors. 

      Before to pass to the more detailed study of this problem, let us pause 

at the energy processes, which occur in the line in the case of the absence 

of losses examined. 

      The fields on the characteristic impedance of plasma, which gives the 

relation of the transverse components of electrical and magnetic, let us 

determine from the relationship 
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1/ 22

0
0 21y

x z

E
Z ZH k

 



 
    
 
 

, 

where 0
0

0
Z 


  is characteristic resistance of vacuum. 

     The obtained value of Z  is characteristic for the transverse electrical 

waves in the waveguides. It is evident that when p  , then Z 

, and 0xH  . When > p  in the plasma there is electrical and 

magnetic component of field. The specific energy of these fields on it 

will be written down: 

2 2
, 0 0 0 0

1 1
2 2E H y xW E H    

Thus, the energy, concluded in the magnetic field, in 
2

21 



 
 
 
 

 of times 

is less than the energy, concluded in the electric field. Let us note that 

this examination, which is traditional in the electrodynamics, is not 

complete, since. in this case is not taken into account one additional form 

of energy, namely kinetic energy of charge carriers. Occurs that fields on 

besides the waves of electrical and magnetic, that carry electrical and 

magnetic energy, in the plasma there exists even and the third - kinetic 

wave, which carries kinetic energy of current carriers. The specific 

energy of this wave is written: 
2

2 2 2
0 0 0 02 2

1 1 1 1
2 2 2k k

k
W L j E E

L


 
    . 

Consequently, the total specific energy of wave is written as 

2 2 2
0 0 0 0 0, ,

1 1 1
2 2 2E H y xj kW E H L j     . 
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Thus, for finding the total energy, by the prisoner per unit of volume of 

plasma, calculation only fields on E  and H  it is insufficient. 

At the point  p   are carried out the relationship: 

0H

E k

W
W W


  

i.e. magnetic field in the plasma is absent, and plasma presents 

macroscopic electromechanical resonator with the infinite quality, p

resounding at the frequency. 

      Since with the frequencies > p  the wave, which is extended in 

the plasma, it bears on itself three forms of the energy: electrical, 

magnetic and kinetic, then this wave can be named 

elektromagnetokinetic wave. Kinetic wave is the wave of the current 

density  
1

k
j E dtL 


. This wave is moved with respect to the 

electrical wave the angle  2


. 

      Until now considered physically unrealizable case where there are no 

losses in the plasma, which corresponds to an infinite quality factor 

plasma resonator. If losses are located, moreover completely it does not 

have value, by what physical processes such losses are caused, then the 

quality of plasma resonator will be finite quantity. For this case of 

Maxwell's equation they will take the form: 

0

0.

,

1 .p ef
k

Hrot E t

Erot H E E dtt L




 


 

   





  

             (3.7)
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The presence of losses is considered by the term .p ef E


, and, using 

near the conductivity of the index of ef , it is thus emphasized that us 

does not interest very mechanism of losses, but only very fact of their 

existence interests. The value of ef determines the quality of plasma 

resonator.  For measuring ef  should be selected the section of line by 

the length of 0z , whose value is considerably lower than the wavelength 

in the plasma. This section will be equivalent to outline with the lumped 

parameters: 

0
0 ,

bzC a                                      (3.8)
                                               

0
,k

aL L bz                                      (3.9)
                                               

0
. ,ef

bzG a                               (3.10)
                                        

where  G  is conductivity, connected in parallel of C  and L . 

Conductivity and quality in this outline enter into the relationship: 

1 CG Q L
 , 

 from where, taking into account (3.8 - 3.10), we obtain 

0
.

1
ef

kQ L



                                (3.11) 

Thus, measuring its own quality plasma of the resonator examined, it is 

possible to determine .p ef . Using (3.2) and (3.11) we will obtain 

0

0
0

,

1 1 .
kk

Hrot E t

Erot H E E dtQ L t L






 




 

   





  

 .  (3.12)
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The equivalent the schematic of this line, filled with dissipative plasma, 

is represented in Fig. 2 в. 

      Let us examine the solution of system of equations (3.12) at the point  

p  , in this case, since 

0
1 0
k

E E dtt L



 



, 

we obtain 

0

0

,

1 .
P k

Hrot E t

rot H EQ L








 






 
 

These relationships determine wave processes at the point of resonance. 

     If  losses in the plasma, which fills line are small, and strange current 

source is connected to the line, then it is possible to assume: 

 

0
0

0,

1 1 ,CT
p k k

rot E

EE E dt jQ L t L
 





  




   ,       (3.13)

                   

 

where CTj


 is density of strange currents. 

After integrating (3.13) with respect to the time and after dividing both 

parts to 0 , we will obtain 

2
2

2
0

1 .CTp
p

p

jE EE Q t tt

  


  
    

  


        (3.14)
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If we relationship (3.14) integrate over the surface of normal to the 

vector E


 and to introduce the electric flux  ,EФ EdS 


 we will 

obtain: 

2
2

2
0

1 CTE E
E

p
p

p

IФ ФФ Q t tt

  


  
     ,      (3.15)

 
 

where  СТI  is strange current. 

 Equation (3.15) is the equation of harmonic oscillator with the right side, 

characteristic for the two-level laser [14]. If the source of excitation was 

opened, then relationship (3.14) presents “cold” laser resonator, in which 

the fluctuations will attenuate exponentially 

2( ) (0)
P tQi t PP

E EФ t Ф e e





   , 

i.e. the macroscopic electric flux ( )EФ t    will oscillate with the 

frequency p , relaxation time in this case is determined by the 

relationship: 

2 P

P

Q



  . 

The problem of developing of laser consists to now only in the skill 

excite this resonator. 

      If resonator is excited by strange currents, then this resonator 

presents band-pass filter with the resonance frequency to equal plasma 

frequency and the passband  2
p

pQ


  . 

      Another important practical application of transverse plasma 

resonance is possibility its use for warming-up and diagnostics of 

plasma. If the quality of plasma resonator is great, then can be obtained 
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the high levels of electrical fields on, and it means high energies of 

charge carriers. 

 

4. Dielectrics  

 
      In the existing literature there are no indications that the kinetic 

inductance of charge carriers plays some role in the electrodynamic 

processes in the dielectrics. This not thus. This parameter in the 

electrodynamics of dielectrics plays not less important role, than in the 

electrodynamics of conductors. Let us examine the simplest case, when 

oscillating processes in atoms or molecules of dielectric obey the law of 

mechanical oscillator [8]. Let us write down the equation of motion   

2 ,m
er Em m


   

 


                             (4.1)

                                       
where mr


 is deviation of charges from the position of equilibrium,   is 

coefficient of elasticity, which characterizes the elastic electrical binding 

forces of charges in the atoms and the molecules. Introducing the 

resonance frequency of the bound charges  

0 m


  , 

we obtain from (4.1) 

2 2 .
( )m

o

e Er
m  

 


                               (4.2)
                                         

Is evident that in relationship (4.2) as the parameter is present the natural 

vibration frequency, into which enters the mass of charge. This speaks, 

that the inertia properties of the being varied charges will influence 

oscillating processes in the atoms and the molecules. 

      Since the general current density on medium consists of the bias 

current and conduction current 
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0
ErotH j nev
t


  



  

, 

that, finding the speed of charge carriers in the dielectric as the derivative 

of their displacement through the coordinate 

2 2( )
m

o

r e Ev t tm  
 

  
 




, 

from relationship (4.2) we find 

2 2
0

0
1

( )kd

E ErotH j t tL


 
 

  
 

 
 

 .         (4.3) 

Let us note that the value 

2kd
mL

ne
  

presents the kinetic inductance of the charges, entering the constitution 

of atom or molecules of dielectrics, when to consider charges free. 

Therefore relationship (4.3) it is possible to rewrite 

2 20
0 0

11
( )kd

ErotH j tL


  

  
      


 

.       (4.4) 

 

Since the value 

2

0

1
pd

kdL



  

it represents the plasma frequency of charges in atoms and molecules of 

dielectric, if we consider these charges free, then relationship (4.4) takes 

the form: 

2

2 20
0

1
( )

pd ErotH j
t




 

    
   


 

.            (4.5) 

To appears temptation to name the value 
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2

2 20
0

( ) 1
( )

pd
  

 


 
  

  
                     (4.6)

                                       
by the depending on the frequency dielectric constant of dielectric. But 

this, as in the case conductors, cannot be made, since this is the 

composite parameter, which includes now those not already three 

depending on the frequency of the parameter: the dielectric constant of 

vacuum, the natural frequency of atoms or molecules and plasma 

frequency for the charge carriers, entering their composition. 

     Let us examine two limiting cases: 

1. If  << 0  then from (4.5) we obtain 

2

20
0

1 pd ErotH j
t






    
   


 

.                 (4.7) 

In this case the coefficient, confronting the derivative, does not depend 

on frequency, and it presents the static dielectric constant of dielectric. 

As we see, it depends on the natural frequency of oscillation of atoms or 

molecules and on plasma frequency. This result is intelligible. Frequency 

in this case proves to be such low that the charges manage to follow the 

field and their inertia properties do not influence electrodynamic 

processes. In this case the bracketed expression in the right side of 

relationship (4.7) presents the static dielectric constant of dielectric. As 

we see, it depends on the natural frequency of oscillation of atoms or 

molecules and on plasma frequency. Hence immediately we have a 

prescription for creating the dielectrics with the high dielectric constant. 

In order to reach this, should be in the assigned volume of space packed 

a maximum quantity of molecules with maximally soft connections 

between the charges inside molecule itself. 

2.  The case, when  >> 0 ., is exponential.  In this case 
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2

20 1 pd ErotH j
t






    
   


 

  

and dielectric became conductor (plasma) since  the obtained relationship 

exactly coincides with the equation, which describes plasma. 

      One cannot fail to note the circumstance that in this case again 

nowhere was used this concept as polarization vector, but examination is 

carried out by the way of finding the real currents in the dielectrics on the 

basis of the equation of motion of charges in these media. In this case as 

the parameters are used the electrical characteristics of the media, which 

do not depend on frequency. 

      From relationship (4.5) is evident that in the case of fulfilling the 

equality  0  , the amplitude of fluctuations is equal to infinity. This 

indicates the presence of resonance at this point. The infinite amplitude 

of fluctuations occurs because of the fact that they were not considered 

losses in the resonance system, in this case its quality was equal to 

infinity.  In a certain approximation it is possible to consider that lower 

than the point indicated we deal concerning the dielectric, whose 

dielectric constant is equal to its static value. Higher than this point we 

deal already actually concerning the metal, whose density of current 

carriers is equal to the density of atoms or molecules in the dielectric. 

       Now it is possible to examine the question of why dielectric prism 

decomposes polychromatic light into monochromatic components or 

why rainbow is formed. So that this phenomenon would occur, it is 

necessary to have the frequency dispersion of the phase speed of 

electromagnetic waves in the medium in question.  If we to relationship 

(4.5) add the Maxwell first equation , then we will obtain: 
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from where we immediately find the wave equation: 
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If one considers that 

0 0 2
1
c

    

where c  is speed of light, then no longer will remain doubts about the 

fact that with the propagation of electromagnetic waves in the dielectrics 

the frequency dispersion of phase speed will be observed.  In the 

formation of this dispersion it will participate immediately three, which 

do not depend on the frequency, physical quantities: the self-resonant 

frequency of atoms themselves or molecules, the plasma frequency of 

charges, if we consider it their free, and the dielectric constant of 

vacuum. 

      Now let us show, where it is possible to be mistaken, if with the 

solution of the examined problem of using a concept of polarization 

vector. Let us introduce this polarization vector  
2

2 2
0

1 .
( )

neP Em  
  



 
 

Its dependence on the frequency, is connected with the presence of mass 

in the charges, entering the constitution of atom and molecules of 

dielectrics. The inertness of charges is not allowed for this vector, 

following the electric field, to reach that value, which it would have in 
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the permanent fields.  Since the electrical induction is determined by the 

relationship: 

0 0
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,       (4.8) 

that, introduced thus, it depends on frequency. 

     If this induction was introduced into the Maxwell second equation, 

then it signs the form: 

0

E ProtH j
t t


   
 

 


 

or 

0

0

2

2 2
1

( )
E ne ErotH j
t m t


 

   
 

 


              (4.9) 

where j  is the summed current, which flows through the model. In 

expression (4.9) the first member of right side presents bias current in the 

vacuum, and the second - current, connected with the presence of bound 

charges in atoms or molecules of dielectric. In this expression again 

appeared the specific kinetic inductance of the charges, which participate 

in the oscillating process of 

2kd
mL

ne
  . 

This kinetic inductance determines the inductance of bound charges. 

Taking into account this relationship (4.9) it is possible to rewrite 

0
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

. 

Obtained expression exactly coincides with relationship (4.3). 

Consequently, the eventual result of examination by both methods 

coincides, and there are no claims to the method from a mathematical 
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point of view. But from a physical point of view, and especially in the 

part of the awarding to the parameter, introduced in accordance with 

relationship (4.8) of the designation of electrical induction, are large 

claims, which we discussed. Is certain, this not electrical induction, but 

the certain composite parameter.  But, without having been dismantled at 

the essence of a question, all, until now, consider that the dielectric 

constant of dielectrics depends on frequency. In the essence, physically 

substantiated is the introduction to electrical induction in the dielectrics 

only in the static electric fields. 

      Let us show that the equivalent the schematic of dielectric presents 

the sequential resonant circuit, whose inductance is the kinetic 

inductance  kdL , and capacity is equal to the static dielectric constant of 

dielectric minus the capacity of the equal dielectric constant of vacuum. 

In this case outline itself proves to be that shunted by the capacity, equal 

to the specific dielectric constant of vacuum. For the proof of this let us 

examine the sequential oscillatory circuit, when the inductance  L  and 

the capacity  C  are connected in series. 

     The connection between the current  CI , which flows through the 

capacity  C , and the voltage  CU , applied to it, is determined by the 

relationships: 

1
CCU I dt

C
   

and 

C
C

dUI C
dt

  .                                   (4.10) 

This connection will be written down for the inductance: 
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1
LLI U dt

L
   

and 

L
L

dIU L
dt

 . 

 

If the current, which flows through the series circuit, changes according 

to the law 0sinI I t , then a voltage drop across inductance and 

capacity they are determined by the relationships  

0 cosLU LI t   

and 

0
1 cosCU I t
C




 , 

and total stress applied to the outline is equal 

0
1 cosU L I t
C

 


   
 

. 

In this relationship the value, which stands in the brackets, presents the 

reactance of sequential resonant circuit, which depends on frequency. 

The stresses, generated on the capacity and the inductance, are located in 

the reversed phase, and, depending on frequency, outline can have the 

inductive, the whether capacitive reactance. At the point of resonance the 

summary reactance of outline is equal to zero. 

      It is obvious that the connection between the total voltage applied to 

the outline and the current, which flows through the outline, will be 

determined by the relationship 
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The resonance frequency of outline is determined by the relationship 

0
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therefore let us write down 
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Comparing this expression with relationship (4.10) it is not difficult to 

see that the sequential resonant circuit, which consists of the inductance  

L  and capacity  C , it is possible to present to the capacity  the form 

dependent on the frequency  

2
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
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 

.                          (4.13) 

This idea does not completely mean that the inductance is somewhere 

lost. Simply it enters into the resonance frequency of the outline  0 . 

Relationship (4.12) this altogether only the mathematical form of the 

record of relationship (4.11). Consequently, this is ( )C   the certain 

composite mathematical parameter, which is not the capacity of outline. 

      Relationship (4.11) can be rewritten and differently: 

 2 2
0

1 UI
tL  
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and to consider that 
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.                                               

Is certain, the parameter ( )C  , introduced in accordance with 

relationships (4.13) and (4.14) no to capacity refers. 

     Let us examine relationship (9.12) for two limiting cases: 

1. When  << 0 , we have  

UI C
t



. 

This result is intelligible, since at the low frequencies the reactance of the 

inductance, connected in series with the capacity, is considerably lower 

than the capacitive and it is possible not to consider it.  
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Fig. 3:  а is the equivalent the schematic of the section of the line, filled 

with dielectric, for the case  >> 0 ; 

б is the equivalent the schematic of the section of line for the case  <<

0 ; 

в is the equivalent the schematic of the section of line for entire 

frequency band. 

the equivalent the schematic of the dielectric, located between the planes 

of long line is shown in Fig. 3.  

2.  For the case, when   >> 0 , we have 
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Taking into account that for the harmonic signal 
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we obtain from (4.15) 

1
LI U dt

L   . 

In this case the reactance of capacity is considerably less than in 

inductance and chain has inductive reactance.    

      The carried out analysis speaks, that is in practice very difficult to 

distinguish the behavior of resonant circuits of the inductance or of the 

capacity. In order to understand the true composition of the chain being 

investigated it is necessary to remove the amplitude and phase response 

of this chain in the range of frequencies.  In the case of resonant circuit 

this dependence will have the typical resonance nature, when on both 

sides resonance the nature of reactance is different. However, this does 

not mean that real circuit elements: capacity or inductance depend on 

frequency. 

In Fig. 3 a and 5 б are shown two limiting cases. In the first case, when 

 >> 0 ,  dielectric according to its properties corresponds to conductor, 

in the second case, when  << 0 ,  it corresponds to the dielectric, 

which possesses the static dielectric constant  
2

20
0

1 pd
 



 
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. 

       Thus, it is possible to make the conclusion that the introduction, the 

depending on the frequency dielectric constants of dielectrics, are 
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physical and terminological error. If the discussion deals with the 

dielectric constant of dielectrics, with which the accumulation of 

potential energy is connected, then the discussion can deal only with the 

static permeability. And precisely this parameter as the constant, which 

does not depend on the frequency, enters into all relationships, which 

characterize the electrodynamic characteristics of dielectrics. 

 the most interesting results of applying such new approaches occur 

precisely for the dielectrics. In this case each connected pair of charges 

presents the separate unitary unit with its individual characteristics and 

its participation in the processes of interaction with the electromagnetic 

field (if we do not consider the connection between the separate pairs) 

strictly individually. Certainly, in the dielectrics not all dipoles have 

different characteristics, but there are different groups with similar 

characteristics, and each group of bound charges with the identical 

characteristics will resound at its frequency.  Moreover the intensity of 

absorption, and in the excited state and emission, at this frequency will 

depend on a relative quantity of pairs of this type. Therefore the partial 

coefficients, which consider their statistical weight in this process, can be 

introduced. Furthermore, these processes will influence the anisotropy of 

the dielectric properties of molecules themselves, which have the specific 

electrical orientation in crystal lattice. By these circumstances is 

determined the variety of resonances and their intensities, which is 

observed in the dielectric media. The lines of absorption or emission, 

when there is a electric coupling between the separate groups of emitters, 

acquire even more complex structure. In this case the lines can be 

converted into the strips. Such individual approach to each separate type 

of the connected pairs of charges could not be realized within the 

framework earlier than the existing approaches. 

 should be still one important circumstance, which did not up to now 

obtain proper estimation. With the examination of processes in the 
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material media, which they are both conductors and dielectrics in all 

relationships together with the dielectric and magnetic constant figures 

the kinetic inductance of charges. This speaks, that the role of this 

parameter with the examination of processes in the material media has 

not less important role, than dielectric and magnetic constant. This is for 

the first time noted in a number the already mentioned sources, including 

in the recently published article  [11]. 

 

Brief conclusions  

 
    It seems in effect improbable what a large quantity of well-known 

physicists is, beginning with the Drudes, Vula and Heaviside [1,15] and 

concluding by Akhiezer, Tamm, Ginsburg and Landau [2-5],  they 

completed such elementary and at the same time blunder, which served 

as basis for the development of the whole it obliged in contemporary 

physics, in which is examined the dispersion of the dielectric and 

magnetic constant of material media. But, nevertheless, this so, and this 

work convincingly proves, that this error was perfected and requires its 

correction. But this indicates not only the revision of the ideological part 

of such approaches, but also the introduction of corrections into a huge 

quantity of works, reference books and fundamental monographs.  And 

this work sooner or later it will arrive to accomplish to the present 

generation of scientists. The error indicated led also to the fact that in the 

field of the sight of physicists did not fall this interesting physical 

phenomenon, as the transverse plasma resonance in the nonmagnetized 

plasma, which can have important technical applications.  
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