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Abstract 
 

     In the article is shown that the emission laws can find their physical explanation 
within the framework the concept of scalar- vector potential. Within the framework 
this concept of  find also their explanation the laws of induction.  
 
 

1. Laws of the electric-electrical induction 

 

      Since pour on any process of the propagation of electrical and potentials it 

is always connected with the delay, let us introduce the being late scalar- 

vector potential, by considering that the field of this potential is extended in 

this medium with a speed of light [1]: 
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 - component of the charge rate g , normal to  

to the vector  r
�

 at the moment of the time  
r

t t
c

′ = − , r - distance between 

the charge  and the point, at which is determined the field, at the moment of 

the time  t . 
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     But does appear a question, on what bases, if we do not use the 

Maksvell equation, from whom does follow wave equation, is introduced 

the being late scalar- vector potential? This question was examined in the 

thirteenth paragraph, when the velocity of propagation of the front of the 

wave of the tension of magnetic and electric field in the long line was 

determined. There, without resorting to the Maxwell's equations, it was 

shown that electrical and magnetic field they are extended with the final 

speed, which in the vacuum line is equal to the speed of light. 

Consequently, such fields be late to the period  
r
c

 . The same delay we 

introduce in this case and for the scalar- vector potential, which is the 

carrier of electrical pour on. 

     Using  relationship ( , )E grad r tϕ= −
�

, let us find field at point 1 (Fig. 

1) . The gradient of the numerical value of a radius of the vector r
�

 is a 

scalar function of two points: the initial point of a radius of vector and its 

end point (in this case this point 1 on the axis of x  and point 0 at the origin 

of coordinates). Point 1 is the point of source, while point 0 - by 

observation point. With the determination of gradient from the function, 

which contains a radius depending on the conditions of task it is necessary 

to distinguish two cases: 1) the point of source is fixed and r
�

 is considered 

as the function of the position of observation point; and 2) observation 

point is fixed and r
�

 is considered as the function of the position of the 

point of source. 
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Fig. 1. Diagram of shaping of the induced electric field. 

 

     We will consider that the charge e  accomplishes fluctuating motion 

along the axis y , in the environment of point 0, which is observation point, 

and fixed point 1 is the point of source and r
�

 is considered as the function 

of the position of charge. Then we write down the value of electric field at 

point 1: 
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When the amplitude of the fluctuations of charge is considerably less than 

distance to the observation point, it is possible to consider a radius vector 

constant. We obtain with this condition: 
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where x  - some fixed point on the axis x . 

Taking into account that  
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we obtain from (2): 
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This is a complete emission law of the moving charge. 

     If we take only first term of the expansion 
y

x
v t

c
sh

c

 − 
  , then we will 

obtain from (3): 
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where y

x
a t

c
 − 
 

 - being late acceleration of charge. This relationship is 

wave equation and defines both the amplitude and phase responses of the 

wave of the electric field, radiated by the moving charge. 
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      If we as the direction of emission take the vector, which lies at the plane 

xy , and which constitutes with the axis of y  the angle α , then 

relationship (4) takes the form: 
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     Relationship (5) determines the radiation pattern. Since in this case there 

is axial symmetry relative to the axis y , it is possible to calculate the 

complete radiation pattern of this emission. This diagram corresponds to 

the radiation pattern of dipole emission. 
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 - being late vector potential, relationship 

(5) it is possible to rewrite 
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     Is again obtained complete agreement with the equations of the being 

late vector potential, but vector potential is introduced here not by 

phenomenological method, but with the use of a concept of the being late 

scalar- vector potential. It is necessary to note one important circumstance: 

in the Maxwell equations the electric fields, which present wave, vortex. In 

this case the electric fields bear gradient nature. 

     Let us demonstrate the still one possibility, which opens relationship (5). 

Is known that in the electrodynamics there is this concept, as the electric 
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dipole and the dipole emission, when the charges, which are varied in the 

electric dipole, emit electromagnetic waves. Two charges with the opposite 

signs have the dipole moment: 

p ed=
�

�

,                                              (6) 

where the vector d
�

is directed from the negative charge toward the positive 

charge. Therefore current can be expressed through the derivative of dipole 

moment on the time of 
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Substituting this relationship into expression (5), we obtain the emission 

law of the being varied dipole 
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This is also very well known relationship [2]. 

     In the process of fluctuating the electric dipole are created the electric 

fields of two forms. First, these are the electrical induction fields of 

emission, represented by equations (4), (5) and (6), connected with the 

acceleration of charge. In addition to this, around the being varied dipole 

are formed the electric fields of static dipole, which change in the time in 

connection with the fact that the distance between the charges it depends on 

time. Specifically, energy of these pour on the freely being varied dipole 

and it is expended on the emission. However, the summary value of field 
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around this dipole at any moment of time defines as superposition pour on 

static dipole pour on emissions. 

     Laws (4), (5), (7) are the laws of the direct action, in which already there 

is neither magnetic pour on nor vector potentials. I.e. those structures, by 

which there were the magnetic field and magnetic vector potential, are 

already taken and they no longer were necessary to us. 

     Using relationship (5) it is possible to obtain the laws of reflection and 

scattering both for the single charges and, for any quantity of them. If any 

charge or group of charges undergo the action of external (strange) electric 

field, then such charges begin to accomplish a forced motion, and each of 

them emits electric fields in accordance with relationship (5). The 

superposition of electrical pour on, radiated by all charges, it is electrical 

wave. 

      If on the charge acts the electric field , then the acceleration of charge is 

determined by the equation 0 siny yE E tω′ ′=  

0 siny

e
a E t

m
ω′= − . 

Taking into account this relationship (5) assumes the form 
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where the coefficient 
2

2
0

sin

4

e
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c m

α
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=  can be named the coefficient of 

scattering (re-emission) single charge in the assigned direction, since it 

determines the ability of charge to re-emit the acting on it external electric 

field. 

     The current wave of the displacement accompanies the wave of electric 

field: 
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If charge accomplishes its motion under the action of the electric field, then 

bias current in the distant zone will be written down as 0 sinE E tω′ ′=  

2

02( , ) cos
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The sum wave, which presents the propagation of electrical pour on (8) and 

bias currents (9), can be named the electric-current wave. In this current wave of 

displacement lags behind the wave of electric field to the angle equal 
2
π

. 

 For the first time this term and definition of this wave was used in the works [3, 

4]. 

     In parallel with the electrical waves it is possible to introduce magnetic 

waves, if we assume that 
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Introduced thus magnetic field is vortex. Comparing (9) and (10) we obtain: 
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Integrating this relationship on the coordinate, we find the value of the 

magnetic field 
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      Thus, relationship (8), (9) and (11) can be named the laws of electrical 

induction, since they give the direct coupling between the electric fields, 

applied to the charge, and by fields and by currents induced by this charge 

in its environment. Charge itself comes out [v] in the role of the 

transformer, which ensures this reradiation. The magnetic field, which can 

be calculated with the aid of relationship (11), is directed normally both 

toward the electric field and toward the direction of propagation, and their 

relation at each point of the space is equal  

0

0 0

( , ) 1
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y

z

E x t
Z

H x t c
µ

ε ε= = = , 

where Z  - wave impedance of free space. 

 The wave impedance determines the active power of losses on the single 

area, located normal to the direction of propagation of the wave: 

2
0

1
2 yP ZE= . 

Therefore electric-curent wave, crossing this area, transfers through it the 

power, determined by the data by relationship, which is located in 

accordance with by the Poynting theorem about the power flux of 

electromagnetic wave. Therefore, for finding all parameters, which 

characterize wave process, it is sufficient examination only of electric-

curent wave and knowledge of the wave drag of space. In this case it is in 

no way compulsory to introduce this concept as magnetic field and its 

vector potential, although there is nothing illegal in this. In this setting of 

the relationships, obtained for the electrical and magnetic field, they 

completely satisfy Helmholtz's theorem. This theorem says, that any single-

valued and continuous vector field, which turns into zero at infinity, can be 
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represented uniquely as the sum of the gradient of a certain scalar function 

and rotor of a certain vector function, whose divergence is equal to zero:  

F grad rotCϕ= +
��

, 

0divC =
�

. 

Consequently, must exist clear separation pour on to the gradient and the 

vortex. It is evident that in the expressions, obtained for those induced pour 

on, this separation is located. Electric fields bear gradient nature, and 

magnetic bear vortex nature. 

     Thus, the construction of electrodynamics should have been begun from 

the acknowledgement of the dependence of scalar potential on the speed. 

But nature very deeply hides its secrets, and in order to come to this simple 

conclusion, it was necessary to pass way by length almost into two 

centuries. The grit, which so harmoniously were erected around the magnet 

poles, in a straight manner indicated the presence of some power pour on 

potential nature, but to this they did not turn attention; therefore it turned 

out that all examined only tip of the iceberg, whose substantial part 

remained invisible of almost two hundred years. 

     Taking into account entire aforesaid one should assume that at the basis 

of the overwhelming majority of static and dynamic phenomena at the 

electrodynamics only one formula  

( ),
v

E r v Ech
c
⊥

⊥′ = , 

which assumes the dependence of the scalar potential of charge on the 

speed [1], lies. From this formula it follows and static interaction of 

charges, and laws of power interaction in the case of their mutual motion, 

and emission laws and scattering. This approach made it possible to explain 

from the positions of classical electrodynamics such phenomena as phase 

aberration and the transverse the Doppler effect, which within the 
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framework the classical electrodynamics of explanation did not find. After 

entire aforesaid it is possible to remove construction forests, such as 

magnetic field and magnetic vector potential, which do not allow here 

already almost two hundred years to see the building of electrodynamics in 

entire its sublimity and beauty. 

     Let us point out that one of the fundamental equations of induction (4) 

could be obtained directly from the Ampere law, still long before appeared 

the Maksvell equations. The Ampere law, expressed in the vector form, 

determines magnetic field at the point , ,x y z  
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where  I  - current in the element  dl
�

, r
�

 - vector, directed from dl
�

to the 

point , ,x y z . 

 It is possible to show that 
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1 1dl
grad dl rot rot dl

r r r

  × = −  
   

�

� �

. 

But the rotor dl
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 is equal to zero and therefore is final 
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Remarkable property of this expression is that that the vector potential 

depends from the distance to the observation point as 
1
r

. Specifically, this 

property makes it possible to obtain emission laws. 

     Since I gv= , where g  the quantity of charges, which falls per unit of 

the length of conductor, from (12) we obtain: 
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For the single charge e  this relationship takes the form: 

4H

ev
A

rπ=
�

�

, 

and since 

A
E

t
µ ∂= − ∂

�

�

, 

that 

4 4

v
g dl ga dltE

r r
µ µπ π

∂
∂= − = −∫ ∫

�

�

�

,               (13) 

where a  - acceleration of charge. 

This relationship appears as follows for the single charge: 
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If we in relationships (13) and (14) consider that the potentials are extended 

with the final speed and to consider the delay 
r
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Of relationship (15) and (16) represent, it is as shown higher (see (4)), wave 

equations. Let us note that these equations - this solution of the Maxwell 

equations, but in this case they are obtained directly from the Ampere law, 

not at all coming running to the Maxwell equations. To there remains only 

present the question, why electrodynamics in its time is not banal by this 

method? 

      Given examples show, as electrodynamics in the time of its existence 

little moved. The phenomenon of electromagnetic induction Faraday 

opened into 1831 years and already almost 200 years its study underwent 

practically no changes, and the physical causes for the most elementary 

electrodynamic phenomena, until now, were misunderstood. Certainly, for 

his time Faraday was genius, but that they did make physics after it? There 

were still such brilliant figures as Maxwell and Hertz, but even they did not 

understand that the dependence of the scalar potential of charge on its 

relative speed is the basis of entire classical electrodynamics, and that this 

is that basic law, from which follow the fundamental laws of 

electrodynamics. 

      Earlier has already been indicated that solution of problems interactions 

of the moving charges in the classical electrodynamics are solved by the 

introduction of the magnetic field or vector potential, which are fields by 

mediators. To the moving or fixed charge action of force can render only 

electric field. Therefore natural question arises, and it is not possible 

whether to establish the laws of direct action, passing fields the mediators, 

who would give answer about the direct interaction of the moving and fixed 

charges. This approach would immediately give answer, also, about sources 

and places of the application of force of action and reaction. Let us show 
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that application of scalar- vector potential gives the possibility to establish 

the straight laws of the induction, when directly the properties of the 

moving charge without the participation of any auxiliary pour on they give 

the possibility to calculate the electrical induction fields, generated by the 

moving charge [1].  

     Let us examine the diagram of the propagation of current and voltage in 

the section of the long line, represented in Fig. 2 . In this figure the wave 

front occupies the section of the line of the long 2z , therefore, the time of 

this transient process equally 2z
t

c
= . This are thing time, for which the 

voltage on incoming line grows from zero to its nominal value. The 

duration of this transient process is adjustable, and it depends on that, in 

which law we increase voltage on incoming line, now we will attempt to 

understand, from where is taken that field strength, which forces charges in 

the conductors, located near the current carrying elements of line, to move 

in the direction opposite to the direction of the motion of charges in the 

primary line. This exactly are that question, to which, until now, there is no 

physical answer. Let us assume that voltage on incoming line grows 

according to the linear law also during the time t∆  it reaches its maximum 

value U , after which its increase ceases. Then in line itself transient 

process engages the section 1z c t= ∆ . Let us depict this section separately, 

as shown in Fig. 2. In the section 1z  proceeds the acceleration of charges 

from their zero speed (more to the right the section 1z ) to the value of 

speed, determined by the relationship 

2eU
v

m
=  , 
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where e  and m  - charge and the mass of current carriers, and U  - voltage 

drop across the section 1z . Then the dependence of the speed of current 

carriers on the coordinate will take the form: 

  2 2
( )

e U
v z z

m z
∂= ∂ .                            (17) 
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Fig. 2. Current wavefront, which is extended in the long line. 

Since we accepted the linear dependence of stress from the time on 

incoming line, the equality occurs 

2
z

U U
E

z z
∂ = =∂ , 

where zE  - field strength, which accelerates charges in the section 1z . 

Consequently, relationship (17) it is possible to rewrite 
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let us calculate it as the function z  on a certain distance r from the line of 
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For the record of relationship (18) are used only first two members of the 

expansion of hyperbolic cosine in series. 

 Using the formula E grad ϕ= − , and differentiating relationship (18) on 

z , we obtain 
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where zE ′ - the electric field, induced at a distance r from the conductor of 

line. Near E  we placed prime in connection with the fact that calculated 

field it moves along the conductor of line with the speed of light, inducing 

in the conductors surrounding line the induction currents, opposite to those, 

which flow in the basic line. The acceleration of charge is determined by 

the relationship z
z

eE
a

m
= . Taking this into account from (19) we obtain 

  
2

04
z

z

ea
E

rcπ ε
′ = −  .                                 (20) 

     Thus, the charges, accelerated in the section of the line 1z , induce at a 

distance r  from this section the electric field, determined by relationship 

(20). Direction of this field conversely to field, applied to the accelerated 

charges. Thus, is obtained the law of direct action, which indicates what 
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electric fields generate around themselves the charges, accelerated in the 

conductor. This law can be called the law of electro-electrical induction, 

since it, passing fields mediators (magnetic field or vector potential), gives 

straight answer to what electric fields the moving electric charge generates 

around itself. This law gives also answer about the place of the application 

of force of interaction between the charges. Specifically, this relationship, 

but not the Faraday law, we must consider as the fundamental law of 

induction, since specifically, it establishes the reason for the appearance of 

induction electrical pour on around the moving charge. In what the 

difference between the proposed approach and that previously existing 

consists. Earlier we said that the moving charge generates vector potential, 

and the already changing vector potential generates electric field. 

Relationship (20) gives the possibility to exclude this intermediate 

operation and to pass directly from the properties of the moving charge to 

the induction fields. Let us show that relationship it follows from this and 

the introduced earlier phenomenologically vector potential, and, therefore, 

also magnetic field. Since the connection between the vector potential and 

the electric field is determined by relationship (19), equality (20) it is 

possible to rewrite  
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and further, integrating by the time, we obtain 

4
z

H

ev
A

rπ= . 

This relationship corresponds to the determination of vector potential. It is 

now evident that the vector potential is the direct consequence of the 
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dependence of the scalar potential of charge on the speed. The introduction 

also of vector potential and of magnetic field this is the useful mathematical 

device, which makes it possible to simplify the solution of number of  

electrodynamic problems, however, one should remember that by 

fundamentals the introduction of these pour on it appears scalar- vector 

potential. 
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