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Abstract

In the article is shown that the emission laass find their physical explanation
within the framework the concept of scalar- vegotential. Within the framework
this concept of find also their explanation th&daof induction.

1. Lawsof the electric-electrical induction

Since pour on any process of the propagatiabectrical and potentials it
Is always connected with the delay, let us intradilhe being late scalar-
vector potential, by considering that the fieldlug potential is extended in

this medium with a speed of light [1]:
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to the vectorr at the moment of the tim¢ =t _E’ I - distance between

the chargeand the point, at which is determined the fieldhatmoment of

the time t.



But does appear a question, on what baseweifdo not use the
Maksvell equation, from whom does follow wave equatis introduced
the being late scalar- vector potential? This qaesivas examined in the
thirteenth paragraph, when the velocity of propagaof the front of the
wave of the tension of magnetic and electric figldthe long line was
determined. There, without resorting to the Maxisediquations, it was
shown that electrical and magnetic field they axeermded with the final

speed, which in the vacuum line is equal to theedpef light.

r
Consequently, such fields be late to the perie():d. The same delay we

introduce in this case and for the scalar- vectatemtial, which is the

carrier of electrical pour on.
Using relationshifE = —grad @(r,t), let us find field at point 1 (Fig.

1) . The gradient of the numerical value of a raditishe vectorl is a
scalar function of two points: the initial point afradius of vector and its
end point (in this case this point 1 on the axixXadnd point O at the origin
of coordinates). Point 1 is the point of source,ilevtpoint 0 - by
observation point. With the determination of gradifrom the function,
which contains a radius depending on the conditainask it is necessary
to distinguish two cases: 1) the point of sourcixisd andf” is considered
as the function of the position of observation pgoend 2) observation
point is fixed andrl" is considered as the function of the positionh& t
point of source.



Fig. 1. Diagram of shaping of the induced elediatxl.

We will consider that the chargg accomplishes fluctuating motion

along the axisy, in the environment of point 0, which is obserwatpoint,

and fixed point 1 is the point of source ands considered as the function
of the position of charge. Then we write down tlaéue of electric field at

point 1:
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When the amplitude of the fluctuations of chargeassiderably less than
distance to the observation point, it is possiblednsider a radius vector

constant. We obtain with this condition:
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where X - some fixed point on the axis.

Taking into account that
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we obtain from (2):
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This is a complete emission law of the moving ckarg
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If we take only first term of the expansish , then we will

X
whereay(t —Ej - being late acceleration of charge. This relatiop is

wave equation and defines both the amplitude amdehesponses of the

wave of the electric field, radiated by the movaigrge.



If we as the direction of emission take tleetar, which lies at the plane

Xy, and which constitutes with the axis of the angle a, then

relationship (4) takes the form:
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Relationship (5) determines the radiationgyattSince in this case there

Is axial symmetry relative to the axig, it is possible to calculate the

complete radiation pattern of this emission. Thiegthm corresponds to

the radiation pattern of dipole emission.
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(5) it is possible to rewrite
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Is again obtained complete agreement withetipgations of the being
late vector potential, but vector potential is a@oluced here not by
phenomenological method, but with the use of a ephof the being late
scalar- vector potential. It is necessary to note ionportant circumstance:
in the Maxwell equations the electric fields, whymlesent wave, vortex. In
this case the electric fields bear gradient nature.

Let us demonstrate the still one possibiliiajch opens relationship (5).

Is known that in the electrodynamics there is ttoacept, as the electric
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dipole and the dipole emission, when the chargéschware varied in the
electric dipole, emit electromagnetic waves. Twardges with the opposite

signs have the dipole moment:
p=ed, (6)
where the vectod is directed from the negative charge toward thetipes

charge. Therefore current can be expressed thrihwegtierivative of dipole

moment on the time of
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Substituting this relationship into expression (&g obtain the emission

law of the being varied dipole
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This is also very well known relationship [2].

In the process of fluctuating the electricalgpare created the electric
fields of two forms. First, these are the electricaduction fields of
emission, represented by equations (4), (5) and d@)nected with the
acceleration of charge. In addition to this, arotimel being varied dipole
are formed the electric fields of static dipole,iethchange in the time in
connection with the fact that the distance betwbercharges it depends on
time. Specifically, energy of these pour on theeliyebeing varied dipole

and it is expended on the emission. However, tmensary value of field
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around this dipole at any moment of time defineswggerposition pour on
static dipole pour on emissions.

Laws (4), (5), (7) are the laws of the diraction, in which already there
IS neither magnetic pour on nor vector potentihés. those structures, by
which there were the magnetic field and magnetictorepotential, are
already taken and they no longer were necessay.to

Using relationship (5) it is possible to obt#ne laws of reflection and
scattering both for the single charges and, for gugntity of them. If any
charge or group of charges undergo the action t&freal (strange) electric
field, then such charges begin to accomplish aefbmmotion, and each of
them emits electric fields in accordance with ielahip (5). The
superposition of electrical pour on, radiated WHycakarges, it is electrical
wave.

If on the charge acts the electric fieldertlthe acceleration of charge is

determined by the equatida, = E , sinct

e _
a=-— E, Sinat.

Taking into account this relationship (5) assunhmesform
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where the coefficientK =———— can be named the coefficient of
47E,'M

scattering (re-emission) single charge in the asslgdirection, since it
determines the ability of charge to re-emit thengcon it external electric
field.

The current wave of the displacement accongsatiie wave of electric
field:
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If charge accomplishes its motion under the aabioiine electric field, then

bias current in the distant zone will be writtemaioasE’ = E, Sinat

. E€w _, X
Jy(X1t) — —m EyO COSC()['[ _Ej . (9)

The sum wave, which presents the propagation atredal pour on (8) and

bias currents (9), can be named the electric-cuvwame. In this current wave of

7
displacement lags behind the wave of electric fielthe angle equaﬁ.

For the first time this term and definition ofghwave was used in the works [3,
4].
In parallel with the electrical waves it isgsthle to introduce magnetic

waves, If we assume that

‘—l
I
—
S
I,

(10)

divid =0

Introduced thus magnetic field is vortex. Compaii@dgand (10) we obtain:

oH (x,t) _ €w sina _, X
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Integrating this relationship on the coordinate, five the value of the

magnetic field

H.(x,t) = e;imf(’lzyo inm(t—%j. (11)
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Thus, relationship (8), (9) and (11) can benad the laws of electrical
induction, since they give the direct coupling bedw the electric fields,
applied to the charge, and by fields and by cusremuced by this charge
in its environment. Charge itself comes out [v] tilme role of the
transformer, which ensures this reradiation. Thgmeéic field, which can
be calculated with the aid of relationship (11)disected normally both
toward the electric field and toward the directmfnpropagation, and their

relation at each point of the space is equal

E,(xt) 1 |y,

H,(xt) &c \ & =2,

whereZ - wave impedance of free space.

The wave impedance determines the active powérsses on the single
area, located normal to the direction of propagadibthe wave:
:%ZEZyO.

Therefore electric-curent wave, crossing this atemsfers through it the
power, determined by the data by relationship, tvhis located in
accordance with by the Poynting theorem about tbevep flux of
electromagnetic wave. Therefore, for finding allrgmaeters, which
characterize wave process, it is sufficient exationaonly of electric-
curent wave and knowledge of the wave drag of spacthis case it is in
no way compulsory to introduce this concept as reagrfield and its
vector potential, although there is nothing illegalhis. In this setting of
the relationships, obtained for the electrical amdgnetic field, they
completely satisfy Helmholtz's theorem. This theoays, that any single-

valued and continuous vector field, which turn® inéro at infinity, can be



represented uniquely as the sum of the gradieata#rtain scalar function
and rotor of a certain vector function, whose dpegice is equal to zero:

F = gradg +rotC,

divC = 0.
Consequently, must exist clear separation pouroctié gradient and the
vortex. It is evident that in the expressions, ol#d for those induced pour
on, this separation is located. Electric fields rbgeadient nature, and
magnetic bear vortex nature.

Thus, the construction of electrodynamics &hbave been begun from
the acknowledgement of the dependence of scalanfait on the speed.
But nature very deeply hides its secrets, andderto come to this simple
conclusion, it was necessary to pass way by lerahost into two
centuries. The grit, which so harmoniously weret@ around the magnet
poles, in a straight manner indicated the preseh@me power pour on
potential nature, but to this they did not turreation; therefore it turned
out that all examined only tip of the iceberg, whaosubstantial part
remained invisible of almost two hundred years.

Taking into account entire aforesaid one sh@agisume that at the basis
of the overwhelming majority of static and dynanmibbenomena at the

electrodynamics only one formula
\
E'(r,v.)=Ech-—=,
(r.v) = Ecn ¥

which assumes the dependence of the scalar pdtenteharge on the
speed [1], lies. From this formula it follows anthtg interaction of
charges, and laws of power interaction in the acdgbeir mutual motion,
and emission laws and scattering. This approachemambssible to explain
from the positions of classical electrodynamicshsphenomena as phase

aberration and the transverse the Doppler effedtjclw within the

10



framework the classical electrodynamics of explamatlid not find. After
entire aforesaid it is possible to remove consioactforests, such as
magnetic field and magnetic vector potential, whaih not allow here
already almost two hundred years to see the bgildfrelectrodynamics in
entire its sublimity and beauty.

Let us point out that one of the fundamentplations of induction (4)
could be obtained directly from the Ampere lawl] &ing before appeared
the Maksvell equations. The Ampere law, expressethé vector form,

determines magnetic field at the pokity, Z

i =

1 IIdFXF

4ird 3

where | - current in the elemendr, I - vector, directed frondl to the
point X, Y, Z.
It is possible to show that

[C:Lr] = grad (%) xdl

and, besides the fact that

grad (%) xdl = rot[%} —%rot d .

But the rotordl is equal to zero and therefore is final

H :rotjl(%j:rotk,

where

A, :jl E%j. (12)
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Remarkable property of this expression is that that vector potential

1
depends from the distance to the observation pacsil?{. Specifically, this

property makes it possible to obtain emission laws.

Sincel = gv, where g the quantity of charges, which falls per unit of

the length of conductor, from (12) we obtain:

Igv dl

For the single charge this relationship takes the form:

and since

that

E=—_yf—0t I ga dl | (13)

wherea - acceleration of charge.

This relationship appears as follows for the siraiarge:

uea

E:_4m"

(14)
If we in relationships (13) and (14) consider tthet potentials are extended

r
with the final speed and to consider the deEaty—Ej, and assuming
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et
E=———% (16)
4rECr

Of relationship (15) and (16) represent, it isla@ve higher (see (4)), wave
equations. Let us note that these equations -stiligion of the Maxwell
equations, but in this case they are obtained tthréom the Ampere law,
not at all coming running to the Maxwell equatioms. there remains only
present the question, why electrodynamics in itsetis not banal by this
method?

Given examples show, as electrodynamics éntithhe of its existence
littte moved. The phenomenon of electromagneticuatidn Faraday
opened into 1831 years and already almost 200 yesastudy underwent
practically no changes, and the physical causesh®rmost elementary
electrodynamic phenomena, until now, were misurideds Certainly, for
his time Faraday was genius, but that they did npdikesics after it? There
were still such brilliant figures as Maxwell andrttg but even they did not
understand that the dependence of the scalar @it@&fitcharge on its
relative speed is the basis of entire classicalteldynamics, and that this
Is that basic law, from which follow the fundamdntiaws of
electrodynamics.

Earlier has already been indicated that swiutf problems interactions
of the moving charges in the classical electrodynarare solved by the
introduction of the magnetic field or vector potahtwhich are fields by
mediators. To the moving or fixed charge actiorfas€e can render only
electric field. Therefore natural question arisasd it is not possible
whether to establish the laws of direct actionspagsfields the mediators,
who would give answer about the direct interacobthe moving and fixed
charges. This approach would immediately give ansaso, about sources

and places of the application of force of actiod a@action. Let us show
13



that application of scalar- vector potential gitles possibility to establish
the straight laws of the induction, when directhe tproperties of the
moving charge without the participation of any diaxy pour on they give

the possibility to calculate the electrical indoatifields, generated by the

moving charge [1].

Let us examine the diagram of the propagatioturrent and voltage in

the section of the long line, represented in Fig.I2 this figure the wave

front occupies the section of the line of the lahg therefore, the time of

Z,

this transient process equaIlF?. This are thing time, for which the

voltage on incoming line grows from zero to its moah value. The
duration of this transient process is adjustabhel i& depends on that, in
which law we increase voltage on incoming line, nee will attempt to
understand, from where is taken that field strengtich forces charges in
the conductors, located near the current carryiagents of line, to move
in the direction opposite to the direction of thetimn of charges in the
primary line. This exactly are that question, taakh until now, there is no
physical answer. Let us assume that voltage onmmup line grows
according to the linear law also during the tilse it reaches its maximum

value U , after which its increase ceases. Then in linelfitransient

process engages the sectiyr CAt . Let us depict this section separately,
as shown in Fig. 2. In the sectiah proceeds the acceleration of charges

from their zero speed (more to the right the sectip) to the value of

speed, determined by the relationship
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wheree and m - charge and the mass of current carriers,ldnd voltage
drop across the sectiop. Then the dependence of the speed of current

carriers on the coordinate will take the form:

2e oU

VA( )—ﬁ E (17)

Fig. 2. Current wavefront, which is extended inlthey line.

Since we accepted the linear dependence of stress the time on

incoming line, the equality occurs

ou U

—=—=E,

0z z,

where E, - field strength, which accelerates charges in gbetion z.
Consequently, relationship (17) it is possiblegwnite

v(ﬂ—mEz.

zZ

Using for the value of scalar-vector potential tielaship

gchD

4ﬂ£r

o(r.t)=

15



let us calculate it as the functianon a certain distandefrom the line of

#(2) =7 (1+

1 Vv*(2) e eE z
—_ o + Z
AT £,1 2 2 j 4T £,1 (1 mc? j (18)

For the record of relationship (18) are used ot ftwo members of the

expansion of hyperbolic cosine in series.

Using the formulaE = —grad ¢, and differentiating relationship (18) on

Z, we obtain

2
, E
E -__ %5 2 (19)
471 £YMC

where EZ' - the electric field, induced at a distanitfom the conductor of

line. Near E we placed prime in connection with the fact thalcelated
field it moves along the conductor of line with tsigeed of light, inducing
in the conductors surrounding line the inductiorrents, opposite to those,

which flow in the basic line. The acceleration blge is determined by

eE
the relationshipa, = mz . Taking this into account from (19) we obtain

_ €a,
E =—2. 20
AT £,rC° (0)

Thus, the charges, accelerated in the seofidhe line Z, induce at a

distancer from this section the electric field, determined reyationship
(20). Direction of this field conversely to fieldpplied to the accelerated

charges. Thus, is obtained the law of direct actmhich indicates what
16



electric fields generate around themselves thegelsaraccelerated in the
conductor. This law can be called the law of eteefectrical induction,
since it, passing fields mediators (magnetic feldrector potential), gives
straight answer to what electric fields the movatgctric charge generates
around itself. This law gives also answer aboutplaee of the application
of force of interaction between the charges. Smadly, this relationship,
but not the Faraday law, we must consider as timelaonental law of
induction, since specifically, it establishes teason for the appearance of
induction electrical pour on around the moving gearin what the
difference between the proposed approach and tietopsly existing
consists. Earlier we said that the moving chargeegees vector potential,
and the already changing vector potential generalestric field.
Relationship (20) gives the possibility to excludieis intermediate
operation and to pass directly from the propemiethe moving charge to
the induction fields. Let us show that relationshifollows from this and
the introduced earlier phenomenologically vectateptal, and, therefore,
also magnetic field. Since the connection betwé&envector potential and
the electric field is determined by relationshi@)lequality (20) it is

possible to rewrite

£'-__ © v, _  0A,
? ArT £,rc? Ot ot ’

and further, integrating by the time, we obtain

_a/Z
M= 2

This relationship corresponds to the determinatibiector potential. It is

now evident that the vector potential is the direohsequence of the
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dependence of the scalar potential of charge ospghed. The introduction
also of vector potential and of magnetic field tisishe useful mathematical
device, which makes it possible to simplify theusioin of number of
electrodynamic problems, however, one should rememthat by
fundamentals the introduction of these pour onppears scalar- vector

potential.
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