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Abstract 
 

      In the contemporary classical electrodynamics exists many unresolved 
problems. The law of the induction of Faraday does not describe all known 
manifestations of induction. Unipolar generator is exception. Incomprehen-
sible is the physical cause for induction. Long time was considered that such 
material parameters, as dielectric and magnetic constant they can depend on 
frequency. It turned out that this not thus. To the examination this problems 
is dedicated the article. 
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1. Introduction 

 
       Until now, some problems of classical electrodynamics involving the 
laws of electromagnetic  induction have been interpreted in a dual or even 
contraversal way.  
      As an example, let us consider how the homopolar operation is ex-
plained in different works. In [1] this is done using the Faraday low speci-
fied for the  “discontinuous motion” case. In [2] the rule of flow is rejected 
and the operation of the homopolar generator is explained on the basis of the 
Lorentz force acting upon  charges. 
      The contradictory approaches are most evident in Feynman’s work [2] 
(see page 53): the rule of flow states that the contour e.m.f. is equal to the 
opposite-sign rate of change in the magnetic flux through the contour when 
the flux varies either with the changing field or due to the motion of the con-
tour (or to both). Two options – “the contour moves” or “the field changes” 
are indistinguishable within the rule. Nevertheless, we use these two com-

pletely different laws to explain the rule for the two cases:  V B × 
� �

 for the 

“moving contour” and 
B

E
t

∂
∂

∇× =−
�

�
 for the “changing field”. And further on: 

There is hardly another case in physics when a simple and accurate general 
law has to be interpreted in terms of two different phenomena. Normally, 
such beautiful generalization should be based on a unified fundamental 
principle. Such principle is absent in our case. The interpretation of the Far-
aday law in [2] is also commonly accepted: Faraday’s observation led to 
the discovery of a new law relating electric and magnetic fields: the electric 
field is generated in the region where the magnetic field varies with time. 
There is however an exception to this rule too, though the above studies do 
not mention it. However, as soon as the current through such a solenoid is 
changed, an electric field is excited externally. The exception seem to be too 
numerous. The situation really causes concern when such noted  physicists 
as Tamm and Feynman have no common approach to this seemingly simple 
question.  
      It is knowing [3] that classical electrodynamics fails to explain the phe-
nomenon of phase aberration. As applied to propagation of light, the phe-
nomenon can be explained only in terms of the special theory of relativity 
(STR).  However, the Maxwell equations are invariant with respect to the 
covariant STR transformations, and there is therefore every reason to hope 
that they can furnish the required explanation of the phenomenon. 
      It is well known that electric and magnetic inductivities of material me-
dia can depend on frequency, i.e. they can exhibit dispersion. But even 
Maxwell himself, who was the author of the basic equations of electrody-
namics,  believed that ε and µ were frequency-independent fundamental 
constants. 
      How the idea of ε and µ-dispersion appeared and evolved is illustrated 
vividly in the monograph of well-known specialists in physics of plasma 
[4]: while working at the equations of electrodynamics of material, media, 
G. Maxwell looked upon electric and magnetic inductivities as constants 
(that is why this approach was so lasting). Much later, at the beginning of 
the XX century, G. Heavisidr and R.Wull put forward their explanation for 
phenomena of optical dispersion (in particular rainbow) in which electric 



 

and magnetic inductivities came as functions of frequency. Quite recently, in 
the mid-50ies of the last century, physicists arrived at the conclusion that 
these parameters were dependent not only on the frequency but on the wave 
vector as well. That was a revolutionary breakaway from the current con-
cepts. The importance of the problem is clearly illustrated by what hap-
pened at a seminar held by L. D. Landau in 1954, where he interrupted A. 
L. Akhiezer reporting on the subject: “Nonsense, the refractive index cannot 
be a function of the refractive index”. Note, this was said by L. D. Landau, 
an outstanding physicist of our time.  
      What is the actual situation? Running ahead, I can admit that Maxwell 
was  right: both ε and µ are frequency – independent constants characteriz-
ing one or another material medium. Since dispersion of electric and mag-
netic inductivities of material media is one of the basic problems of the pre-
sent – day physics and electrodynamics, the system of views on these ques-
tions has to be radically altered again (for the second time!). 
      In this context the challenge of this study was to provide a comprehen-
sive answer to the above questions and thus to arrive at a unified and unam-
biguous standpoint. This will certainly require a revision of the relevant in-
terpretations in many fundamental works. 

 
1. Equations of electromagnetic induction in moving coordinates 

 
      The Maxwell equations do not permit us to write down the fields in 
moving coordinates proceeding from the known fields measured in the sta-
tionary coordinates. Generally, this can be done through the Lorentz trans-
formations but they so not follow from classical electrodynamics. In a ho-
mopolar generator, the electric fields are measured in the stationary coordi-
nates but they are actually excited in the elements which move relative to 
the stationary coordinate system. Therefore, the principle of the homopolar 
generator operation can be described correctly only in the framework of the 
special theory of relativity (STR). This brings up the question: Can classical 
electrodynamics furnish correct results for the fields in a moving coordinate 
system, or at least offer an acceptable approximation? If so, what form will 
the equations of electromagnetic induction have? 
      The Lorentz force is 

F eE e V B ′ = + × 
� � � �

. 

 
      It bears the name of Lorentz it follows from his transformations which 
permit writing the fields in the moving coordinates if the fields in the sta-
tionary coordinates are known. Henceforward, the fields and forces generat-
ed in a moving coordinate system will be indicated with primed symbols.  
      The clues of how to write the fields in moving coordinates if they are 
known in the stationary system are available even in the Faraday law. Let us 
specify the form of the Faraday law: 
 

Bd
E dl dt

Φ
′ ′=−∫
��

� .                                (1.1) 

      The specified law, or, more precisely, its specified form, means that E
�

 

and dl
�

 should be primed if the contour integral is sought for in moving co-
ordinates and unprimed for stationary coordinates. In the latter case the 



 

right-hand side of Eq. (1.1) should contain a partial derivative with respect 
to time which fact is generally not mentioned in literature. 
      The total derivative with respect to time in Eq. (1.1) implies that the fi-
nal result for the contour e.m.f. is independent of the  variation mode of the 
flux. In other words, the flux can change either purely with time variations 

of B
�
 or because the system, in which E d l′ ′∫

��
�  is measured, is moving in the 

spatially varying field B
�
. In Eq. (1.1) 

B
B d S′Φ = ∫

��
                              (1.2)  

where the magnetic induction B Hµ=
��

 is measured in the stationary coordi-

nates and the element d S′
�

 in the moving coordinates. 
      Taking into account Eq. (1.2), we can find from Eq. (1.2) 
  

d
Ed l B d S

d t
′ ′ ′=−∫ ∫
� �� �

� .     

Since  
d

V grad
d t t

∂
∂

= +
�

, we can write 

               
B

E d l d S B V d l V div B d S
t

∂
∂

′ ′ ′ ′ =− − × −∫ ∫ ∫ ∫ 

�
� �� �� � � � �

� . (1.3) 

In this case contour integral is taken over the contour d l′
�

, covering the 

space d S′
�

. Henceforward, we assume the validity of the Galilean transfor-

mations, i.e. d l d l′=
� �

 and d S d S′=
� �

. Eq. (1.3) furnishes the well-known re-
sult: 

                            E E V B′  = + × 
� � � �

,       (1.4) 

which suggests that the motion in the magnetic field excites an additional 
electric field described  by the final term in Eq. (1.4). Note that Eq. (1.4) is 
obtained from the slightly specified Faraday law and not from the Lorentz 
transformations. 
      According to Eq. (1.4), a charge moving in the magnetic field is influ-
enced by a force perpendicular to the direction of the motion. However, the 
physical nature of this force has never been considered. This brings confu-
sion into the explanation of the homopolar generator operation and does not 
permit us to explain the electric fields outside an infinitely long solenoid on 
the basis of the Maxwell equations.  
      To clear up the physical origin of the final term in Eq. (1.4), let us write 

B
�
 and E

�
 in terms of the magnetic vector potential B

A
�

:   

, B

B

A
B rotA E

t

∂
∂

= = −
�

�� �

.  

Then, Eq. (1.4) can be re-written as 

B
B

A
E V rotA

t

∂
∂

 ′ = − + × 

�
�� �

 ,  

and further: 

                                 ( ) ( )BB

BA
E V A grad VA

t

∂
∂

′ = − − ∇ +
�

� �� � �
. (1.5) 

The first two terms in the right-hand side of Eq. (1.5) can be considered as 
the total derivative of the vector potential with respect to time: 



 

                         ( )B
BdA

E grad VA
dt

′ = − +
�

�� �
. (1.6) 

As seen in Eq. (1.5), the field strength, and hence the force acting upon a 
charge consists of three components. 
      The first component describes the pure time variations of the magnetic 
vector potential. The second term in the right-hand side of Eq. (1.5)  is evi-
dently connected with the changes in the vector potential caused by the mo-
tion of a charge in the spatially varying field of this potential. The origin of 
the last term in the right-hand side of Eq. (1.5) is quite different. It is con-
nected with the potential forces because the potential energy of a charge 

moving in the potential field B
A
�

 at the velocity V
�

 is equal to ( )Be VA
��

. The 

magnitude ( )Begrad VA
��

 describes the force just as the scalar potential gradi-
ent does. 
      Using Eq. (1.5), we can explain physically all the strength components 
of the electronic field excited in the moving and stationary cooperates. If our 
concern is with the electric fields outside a long solenoid, where the no 
magnetic field, the first term in the right-hand side of Eq. (1.5) come into 
play. In the case of a homopolar generator, the force acting upon a charge is 
determined by the last two terms in the right-hand side of Eq.(1.5), both of 
them contributing equally. 
      It is therefore incorrect to look upon the homopolar generator as the ex-
ception to the flow rule because, as we saw above, this rule allows for all the 
three components. Using the rotor in both sides  Eq. (1.6) and taking into 
account  rot grad ≡ 0, we obtain 

dB
rotE

dt
′ = −

�
�

 .                                      (1.7) 

If motion is absent,  Eq. (1.7) turns into Maxwell equation (1.2). Equation 
(1.11) is certainly less informative than Eq.  (1.1):  because  rot grad ≡ 0, it 

does not include the forces defined in terms  ( )Begrad VA
��

. It is therefore 
more reasonable to use Eq. (1.1) if we want to allow for all components of 
the electric fields acting upon a charge both in the stationary and in the mov-
ing coordinates. 
      As a preliminary conclusion, we may state that the Faraday Law,  Eq. 
(1.1), when examined closely, explains clearly all features of the homopolar 
generator operation, and this operation principle is a consequence, rather 
than an exception, of the flow rule, Eq. (1.1). Feynman’s statement that 

V B × 
� �

 for the “moving contour” and 
B

E
t

∂
∂∇× = −
�

�
 for the “varying field” 

are absolutely different laws is contrary to fact. The Faraday law is just the 
sole unified fundamental principle which Feynman declared to be missing. 
Let us clear up another Feynman’s interpretation. Faraday’s observation in 
fact led him to discovery of a new law relating electric and magnetic fields 
in the region where the magnetic field varies with time and thus generates 
the electric field. This correlation is essentially true but not complete. As 
shown above, the electric field can also be excited where there is no magnet-
ic field, namely, outside an infinitely long solenoid. A more complete for-



 

mulation follows from Eq. (1.5) and the relationship 
BdA

E
dt

= −
�

�
   is more 

general than  
B

rot E
t

∂
∂= −
�

�
. 

      This suggests that a moving or stationary charge interacts with the field 
of the magnetic vector potential rather than with the magnetic field. The 
knowledge of this potential and its evolution can only permit us to calculate 
all the force components acting upon charges. The magnetic field is merely 
a spatial derivative of the vector field.  
      As follows from the above consideration, it is more appropriate to write 
the Lotentz force in terms of the magnetic vector potential 

[ ] ( ) ( )
B B B

F eE e V rotA eE е V A еgrad VA
′ = + × = − ∇ +

� � �� � � � � �
, 

which visualizes the complete structure of the force. 
      The Faraday law, Eq. (1.1) is referred to as the law of electromagnetic 
induction because it shows how varying magnetic fields can generate elec-
tric fields. However, classical electrodynamics contains no law of magne-
toelectric induction showing how magnetic fields can be excited by varying 
electric fields. This aspect of classical electrodynamics evolved along a dif-
ferent pathway. First, the law 

H dl I=∫
��

� ,                                         (1.8) 
was known, in which  I was the current crossing the area of the integration 
contour. In the differential from Eq. (1.8) becomes 

rotH jσ=
� �

 ,                                        (1.9) 

where jσ
�

 is the conduction current density. 

      Maxwell supplemented Eq. (1.9) with displacement current 

D
rotH j

tσ

∂
∂

= +
�

� �

 . 

However, if  Faraday had performed measurement in varying electric in-
duction fluxes, he 

would have inferred the following law [5-9] 

Dd
H dl

dt

Φ′ ′ =∫
��

�  ,                                 (1.10) 

where D
D d S′Φ = ∫
�

 is the electric induction flux. Then  

[ ]
D

Hd l d S D V d l V div D d S
t

∂
∂

′ ′ ′ ′= + × +∫ ∫ ∫ ∫

�
� ��� � � � � �

� � .               (1.11) 

Unlike 0divB =
�

 in magnetic fields, electric fields are characterized by 

divD ρ=
�

 and the last term in the right-hand side  Eq. (1.11) describes the 
conduction current I, i.e. the Ampere law follows from Eq. (1.10). Eq. 
(1.11) gives 

[ ]H D V= ×
� � �

,                              (1.12) 

which was earlier obtainable only from the Lorentz transformation. 
      Moreover, as was shown convincingly in [2], Eq. (1.12) also leads out of 
the Biot-Savart law if magnetic fields are calculated from the electric fields 
excited by moving charges. In this case the last term in the right-hand side  



 

Eq. (1.11) can be omitted and the induction laws become completely sym-
metrical. 

[ ] ,

[ ] .

B
E d l d S B V d l

t

D
Hd l d S D V d l

t

∂
∂

∂
∂

′ ′ ′= − − ×∫ ∫ ∫

′ ′ ′= + ×∫ ∫ ∫

�
� �� � �

� �

�
� �� � �

� �

                 (1.13) 

[ ] ,

[ ] .

E E V B

H H V D

′ = + ×

′ = − ×

� � �

� � �                                 (1.14) 

Earlier,  Eqs. (1.14) were only obtainable from the covariant Lorentz trans-
formations, i.e. in the framework of special theory of relativity (STR). Thus, 

the STR results accurate to the ~ 
V

c
 terms can be derived from the induction 

laws through the Galilean transformations. The STR results accurate to the 
2

2

V

c  terms can be obtained through transformation of Eq (1.13).  At first, 

however, we shall introduce another vector potential which is not used in 
classical electrodynamics. Let us assume for vortex fields [5] that 

D
D rotA=

��
 , 

where D
A
�

 is the electric vector potential. It then follows from Eq. (1.13) that 
 

[ ] [ ]D

D D

A
H V A grad VA

t

∂
∂

′ = + ∇ −
�

� �� � �
, 

or 

[ ]D

D

A
H V rotA

t

∂
∂

′ = − ×
�

�� �
, 

or 

[ ]D

D

dA
H grad VA

dt
′ = −
�

�� �
 . 

 
These equations present the law of magnetoelectric induction [5] written in 
terms of the electric vector potential. 
      To illustrate the importance of the introduction of the electric vector po-
tential, we come back to an infinitely long solenoid. The situation is much 
the same, and the only change is that the vectors B

�
 are replaced with the 

vectors D
�

. Such situation is quite realistic: it occurs when the space between 
the flat capacitor plates is filled with high electric inductivities. In  this case 
the displacement flux is almost entirely inside the dielectric. The attempt  to 
calculate the magnetic field outside the space occupied by the dielectric 

(where 0D≅
�

) runs into the same problem that existed for the calculation be-
yond the fields E

�
 of an infinitely long solenoid. The introduction of the 

electric vector potential permits a correct solution of this problem. This 
however brings up the question of priority: what is primary and what is sec-
ondary? The electric vector potential is no doubt primary because electric 
vortex fields are excited only where the rotor of such potential is non-zero. 
      As follows from Eqs. (1.14), if the reference systems move relative to 
each  other, the fields E

�
 and H

�
 are mutually connected, i.e. the movement 



 

in the fields H
�

 induces the fields E
�
 and vice versa. But new consequences 

appear, which were not considered in classical electrodynamics. For illustra-
tion, let us analyze two parallel conducting plates with the electric field E

�
 in 

between. In this case the surface charge ρS per unit area of each plate is εЕ. 
If the other reference system is made to move parallel to the plates in the 
field Е at the velocity ∆V, this motion will generate an additional field ∆Н = 
∆VεЕ. If a third reference system starts to move at the velocity ∆V, within 
the above moving system, this motion in the field ∆Н will generate ∆Е = 
µε∆V2

Е, which is another contribution to the field Е. The field E′  thus be-
comes stronger in the moving system than it is in the stationary one. It is 
reasonable to suppose that the surface charge at the plates of the initial sys-

tem has increased by 
2 2

V Eµε ∆ as well. 

      This technique of field calculation was described in [5-9]. If we put E�
�

 

and H�
�

 for the field components parallel to the velocity direction and E⊥
�

 

and H⊥
�

 for the perpendicular components, the final fields at the velocity V 
can be written as 
 

0

0

,

[ ] ,

,

1
[ ] ,

E E

ZV V
E E ch V H sh

c V c

H H

V V
H H ch V E sh

c Z V c

⊥ ⊥ ⊥

⊥⊥ ⊥

′ =

′ = + ×

′ =

′ = − ×

� �

� �

� �

� � � �

� �

� � � �

               (1.15)  

 

where 0
Z

µ
ε

=  is the space impedance, 
1

c
µ ε

=  is the velocity of light in the 

medium under consideration. 
      The results of these transformations coincide with the STR data with the 

accuracy to the ~
2

2

V

c  terms. The higher-order corrections do not coincide. It 

should be noted that until now experimental tests of the special theory of 

relativity have not gone beyond the ~
2

2

V

c  accuracy. 

      As an example, let us analyze how Eqs. (1.15) can account for the phe-
nomenon of phase aberration which was inexplicable in classical electrody-
namics. 
      Assume that there are plane wave components HZ and EX, and the 
primed system is moving along the x-axis at the velocity VX. The field com-
ponents with in the primed coordinates can be written as 

,

,

.

X X

X
Y Z

X

Z Z

E E

V
E H sh

c

V
H H ch

c

′ =

′ =

′ =

                           (1.16) 



 

The total field  Е in the moving system is 

( ) ( )
1
22 2

X

XX Y
V

E E E E ch
c

 ′ ′′ = + = 
 

 . 

Hence, the Poynting vector no longer follows the direction of the y-axis. It is 
in the xy-plane and tilted about the y-axis at an angle determined by Eqs. 
(1.16). The ratio between the absolute values of the vectors Е and Н is the 
same in both the systems. This is just what is known as phase aberration in 
classical electrodynamics.  
 
 
2. Magnetic field problem 

 
      As follows from the transformations in Eq. (1.15) if two charges move 

at the relative velocity V
�

, their interaction is determined not only by the 
absolute values of the charges but by the relative motion velocity as well. 
The new value of the interaction force is found as [6-9] 

1 2
12
3

0 124

V
g g ch rcF

rπε

⊥

= ⋅
�

�

 ,                                 (2.1) 

where 12r
�

 is the vector connecting the charges, V⊥ is the component of the 

velocity V
�

, normal to the vector 12r
�

. 
      If opposite-sign charges are engaged in the relative motion, their attrac-
tion increases. If the charges have the same signs, their repulsion enhances. 

For V
�

= 0, Eq. (2.1) becomes the Coulomb law . 
      Using Eq. (2.1), a mew value of the potential ϕ(r) can be introduced at 
the point, where the charge g2 is located, assuming that g2 is immobile and 
only g1 executes the relative motion 

1

0

( )
4

V
g ch

cr
r

φ
πε

⊥

=  .                                   (2.2) 

 
We can denote this potential as “scalar-vector”, because its value is depend-
ent not only on the charge involved but on the value and the direction of its 
velocity as well. The potential energy of the charge interaction is 
 

1 2

04

V
g g ch

cW
rπε

⊥

=  .                                 (2.3) 

 
Eqs. (2.1), (2.2) and (2.3) apparently account for the change in the value of 
the moving charges. 
      Using these equations, it is possible to calculate the force of the conduc-
tor-current interactions and allow, through superposition, for the interaction 
forces of all moving and immobile charges in the conductors. We thus ob-
tain all currently existing laws of electromagneticm. 
      Let us examine the force, interaction of two r-spaced conductors (Fig. 1) 
assuming that the electron velocities in the conductors are V1 and V2. The 
moving charge values per unit length of the conductors are g1 and g2. 



 

      In terms of the present-day theory of electromagnetism, the forces of the 
interaction of the conductors can be found by two methods. 
      One of the conductors (e.g., the lower one) generates the magnetic field 
H(r) in the location of the first conductor. This field is 

 

11( )
2

g V
r

r
H π=  . 

The field E′  is excited in the coordinate system moving together with the 
charges of the upper conductor: 

 

2 2
( )E V B V H rµ′  = × = 

� �
 .                                (2.4) 

 
I.e. the charges moving in the upper conductor experience the Lorentz force.  
This force per unit length of the conductor is 
 

1 1 2 2 1 2
2

02 2
gV g V I I

F
r c r

µ
π πε= =  .                              (2.5) 

 
 

 
 
Fig. 1.  Schematic view of force interaction between current-carreging  con-
ductors of a two-conductor line in terms of the present-day model. 
 
 
Eq. (2.6) can be obtained in a different way. Assume that the lower conduc-
tor excites a vector potential in the region of the upper conductor. The z – 
component of the vector potential is  

1 1 1
2 2

0 0

ln ln
2 2Z

gV r I r
A

c cπε πε= − = − .     

The potential energy per unit length of the upper conductor carrying the cur-
rent I2 in the field of the vector potential AZ is 

1 2
22

0

ln
2Z

I I r
W I A

cπε= = −  . 

Since the force is the derivative of the potential energy with respect to the 
opposite-sign coordinate, it is written as 

1 2
2

02
I IW

F
r c r

∂
∂ πε

= − =  .                                 (2.6) 

      Both the approaches show that the interaction force of two conductors is 
the result of the interaction of moving charges: some of them excite fields, 
the others interact with them. The immobile charges representing the lattice 
do not participate in the interaction in this scheme. But the forces of the 



 

magnetic interaction between the conductors act just on the lattice. Classical 
electrodynamics does mot explain how the moving charges experiencing 
this force can transfer it to the lattice. 
      The above models of iteration are in unsolvable conflict, and experts in 
classical electrodynamics prefer to pass it over in silence. The conflict is 
connected with estimation  of the interaction force of two parallel-moving 
charges. Within the above models such two charges should be attracted. In-
deed, the induction В caused by the moving charge g1 at the distance r is 
 

1
2 2

02
gV

B
c rπε= . 

 
If another charge g2 moves at the same velocity V in the same direction at 
the distance r from the first charge, the induction В at the location g2 pro-
duces the force attracting g1 and g2. 
 

2
1 2

2 2
04

g g V
F

c rπε= . 

 
An immovable observer would expect these charges to experience attraction 
along with the Coulomb repulsion. For an observer moving together with 
the charges there is only the Coulomb repulsion and no attraction. Neither 
classical electrodynamics not the special theory of relativity can solve the 
problem. 
      Physically, the introduction of magnetic fields reflects certain experi-
mental facts, but so far we can hardly understand where these fields come 
from. 
      In 1976 it was reported in a serious experimental study that a charge ap-
peared on a short-circuited superconducting solenoid when the current in it 
was attenuating. The results of [10] suggest that the value of the charge is 
dependent on its velocity, which is first of all in contradiction with the 
charge conservation law. It is useful to analyze here the interaction of cur-
rent-carrying systems in terms Eqs. (2.1), (2.2) and (2.3) .  
      We come back again to the interaction of two thin conductors with 
charges moving at the velocities V1 and V2 (Fig. 2).  
 
                       

 
 
 
Fig. 2.  Schematic view of force interaction between current-carrying wires  
of a two-conductor line. The lattice is charged positively. 
 



 

g1
+, g2

+ and g1
–, g2

– are the immobile and moving charges, respectively, pre 
unit length of the conductors. g1

+ and g2
+ refer to the positively charged lat-

tice in the lower and upper conductors, respectively. Before the charges start 
moving, both the conductors are assumed to be neutral electrically, i.e. they 
contain the same number of positive and negative charges. 
      Each conductor has two systems of unlike charges with the specific den-
sities g1

+, g1
– and g2

+, g2
– . The charges neutralize each other electrically. To 

make the analysis of the interaction forces more convenient, in Fig. 2 the 
systems are separated along the z-axis. The negative-sign subsystems (elec-
trons) have velocities V1 and V2. The force of the interaction between the 
lower and upper conductors can be considered as a sum of four forces speci-
fied in Fig. 2 (the direction is shown by arrows). The attraction forces F3 
and F4 are positive, and the repulsion forces F1 and F2 are negative. 
      According to Eq. (2.1), the forces between the individual charge subsys-
tems (Fig. 2) are 
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By adding up the four forces and remembering that the product of unlike 
charges and the product of like charges correspond to the attraction and re-
pulsion forces, respectively, we obtain the total specific force per unit length 
of the conductor 
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where g1 and g2 are the absolute values of charges. The signs of the forces 
appear in the bracketed expression. Assuming V<< с, we use only the two 

first terms in the expression 
V

ch
c

, i.e. 
V

ch
c

≅1+
2

2

1
2

V
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where g1 and g2 are the absolute values of specific charges, and V1 , V2  are 
taken with their signs. 
 It is seen that Eqs. (2.5), (2.6) and (2.8) coincide though they were 
obtained by different methods. 
      According to Feynman (see the introduction), the e.m.f. of the circuit 
can be interpreted using two absolutely different laws. The paradox has 
however been clarified. The force of the enteraction between the current-
carrying systems can be obtained even by three absolutely different meth-
ods. But in the third method, the motion “magnetic field” is no longer nec-



 

essary and the lattice can directly participate in the formation of the interac-
tion forces. This was impossible with the previous two techniques. 
      In practice the third method however runs into a serious obstacle. As-
suming  g2

+ = 0 and V2 = 0, i.e. the interaction, for example, between the 
lower current-carrying  system and the immobile charge g2

– the interaction 
force is 
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This means that the current in the conductor is not electrically neutral, and 
the electric field 
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is excited around the conductor, which is equivalent to an extra specific stat-
ic charge on the conductor 
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Before  [10], there was no evidence for generation of electric fields by d.c. 
currents. 
      When Faraday and Maxwell formulated the basic laws of electrodynam-
ics, it was impossible to confirm Eq. (2.10) experimentally because the cur-
rent densities in ordinary conductors are too small to detect the effect. The 
assumption that the charge is independent of its velocity and the subsequent 
introduction of a magnetic field were merely voluntaristic acts. 
      In superconductors the current densities permit us to find the correction 

for the charge 
2

1
2~

V
g

c  experimentally. Initially, was taken as evidence for 

the dependence of the value of the charge on its velocity. The author of this 
study has also investigated this problem, but, unlike [8-10], in his experi-
ments current was introduced into a superconducting coil by an inductive 
non-contact method. Even in this case a charge appeared on the coil. The 
experimental objects were superconducting composite Nb – Ti wires coated 
with copper, and it is not cleat what mechanism is responsible for the charge 
on the coil. It may be brought by mechanical deformation which causes a 
displacement of the Fermi level in the copper. Experiments on non-coated 
superconducting wires may be more informative. Anyhow, the subject has 
not been exhausted and further experimental findings are of paramount im-
portance to fundamental physics. Using this model, we should remember 
that there is no reliable experimental data on static electric fields around the 
conductor. According to Eq. (2.9), such fields are excited because the value 
of the charge is dependent on its velocity. Is there any physical mechanism 
which could maintain the interacting current-carrying systems electrically 
neutral within this model? Such mechanism  does exist. To explain it, let us 
consider the current-carrying circuit in Fig. 3. This is a superconducting thin 
film whose thickness is smaller than the field penetration depth in the super-
conductor. The current is therefore distributed uniformly over the film 
thickness. Assume that the bridge connecting the wide parts of the film is 



 

much narrower than the rest of the current-carrying film. If persistent cur-
rent is excited in such a circuit, the current density and hence the current 
carrier velocity V1 in the bridge will much exceed the velocity V0  in the 
wide parts of the film.  
      Such situation is possible if the current carriers are accelerated in the 
part d1 and slowed down in the part  d2. But acceleration and slowing-down 
of charges is possible only in electric fields. If V1 > V0, the potential differ-
ence between the parts d1 and d2  which causes acceleration or slowing-
down is determined as  
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This potential difference can appear only due to the charge density gradient 
in the parts d1 and d2, i.e. the density of charge carriers decreases with ac-
celeration and increases with slowing down. The relation n0 > n1 should be 
fulfilled, where n0 and n1 are the current-carrier densities in the wide and 
narrow bridge parts of the film,  
 

  
 
 Fig. 3.     Schematic view of a current-carrying circuit based on a supercon-
ducting film. 
 
respectively. It is clear that some energy is needed to accelerate charges 
which have masses. Let us find out where this energy comes from. 
      On acceleration the electrostatic energy available in the electrostatic 
field of the current carriers converts into kinetic energy. The difference in 
electrostatic energy between two identical volumes having different electron 
densities can be written as 
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where ∆n = n0 – n1, e is the electron charge, r is the electron radius. 
Since 
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where m is the electron mass, Eq. (2.12) can be rewritten as 
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This energy is used to accelerate the current carriers. 
Hence, 
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The electron density in a moving flow is 
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      We see that the change in the current-carrier density is quite small, but 
this change is just responsible for the existence of the longitudinal electric 
field accelerating or slowing down the charges in the parts d1 and d2. Let us 
call such fields “configuration fields” as they are connected with a certain 
configuration of the conductor. These fields are available in normal conduc-
tors too, but they are much smaller than the fields related to the Ohmic re-
sistance. 
      We can expect that a voltmeter connected to the circuit, like is shown in 
Fig. 3, would be capable of registering the configuration potential difference 
in accordance with Eq. (2.11). If we used an ordinary liquid and a manome-
ter instead of a voltameter, according to the Bernoulli equation, the manom-
eter could  register the pressure difference. For lead films, the configuration 
potential difference is ~10-7 

В, though it is not observablt experimentally. 
We can explain this before hand. As the velocities of the current carriers 
increase and their densities decrease, the electric fields njrmal to their 
motion enhance. These two precesses counterbalance each other. As a 
result, the normal component of the electric field has a zero balue in all parts 
of the film. In terms of the considered, this looks like  
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The bracketed expressions in Eqs. (2.13) allow for the motion-related 
change in the density of the charges g1

– and g2
–. 

      After expanding  ch , multiplying out and allowing only for the 
2

2

V

c
≃    

terms, Eqs. (2.13) give 
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By adding up F1, F2, F3  and F4, we  obtain the total force of the interaction 
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Again, we have a relation coinciding with Eqs.  (2.5) and (2.6). However, in 
this case the current-carrying conductors are neutral electrically. Indeed, if 
we analyze the force interaction. For example, between the lower conductor 
and the upper immobile charge g2 (putting g2

+=0 and V2=0), the total inter-
action force will be zero, i.e. the conductor with flowing current is electri-
cally neutral. 
      If we consider the interaction of two parallel – moving electron flows 
(taking g1

+=g2
+=0 and V1=V2) , according to Eq. (2.7), the total force is 
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      It is seen that two electron flows moving at the same velocity in the ab-
sence of a lattice experience only the Coulomb repulsion and no attraction 
included into the magnetic field concept. 
      Physically, in this model the force interaction of the current-carrying 
systems is not connected with any now field. The interaction is due to the 
enhancement of the electric fields normal to the direction of the charge mo-
tion. 
      The phenomenological concept of the magnetic field of correct only 
when the charges of the current carriers are compensated with the charges of 
the immobile lattice, the current carriers excite a magnetic field. The mag-
netic field concept is not correct for freely moving charges when there are 
no compensating charges of the lattice. In this case a moving charged parti-
cle or a flow of charged particles does not excite a magnetic field. Thus, the 
concept of the phenomenological magnetic field is true but for the above 
case. 
      It is easy to show that using the scalar-vector potential, we can obtain all 
the presently existing laws of magnetism. Besides, the approach proposed 
permits a solution of the problem of the interaction between two parallel-
moving charges which could not be solved in terms of the magnetic field 
concept. 

 
 



 

3. Problem of electromagnetic radiation 
 

      Whatever occurs in electrodynamic, it is connected with the interaction 
of moving and immobile charges. The introduction of the scalar-vector po-
tential answers this question. The potential is based on the laws of electro-
magnetic and magnetoelectric induction. The Maxwell equations describing 
the wave processes in material media also follow from these laws. The 
Maxwell equations suggest that the velocity of field propagation is finite 
and equal to the velocity of light. 
      The problem of electromagnetic radiation can be solved of the elemen-
tary level using the scalar-vector potential and the finiteness of propagation 
of electric processes. 
      For this purpose, the retarded scalar-vector potential [5-9] 
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is introduced, where V⊥′  is the velocity of the charge g1 at the moment 

r
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′′= − , normal to the vector r ′� , r ′  is the distance between the charge g1 

and point 2 (Fig. 4), where the field is sought for at the moment t . The field 
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ty is ( )V t⊥′ . The field Ey at point 2 is 
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Differentiation is performed assuming r ′  to be a constant magnitude. From 
Eq. (3.2) we obtain 
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Using only the first term of the expansion of  
 (t)

c
V

sh ⊥′  we can obtain from 

Eq. (3.3)  
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 Fig. 4.  Formation of the retarded scalar-vector potential. 
 
 

In this equation of y
x

a t
c

 − 
 

 is the being late acceleration of charge. This 

equation is wave equation and defines both the amplitude and phase respons-
es of the wave of the electric field, radiated by the moving charge. 
If we as the direction of emission take the vector, which composes with the 
axis of y  the angle of α , then Eg. (3.4) will be written down: 
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Eg.  (3.5) determines the radiation pattern. Since there is a axial symmetry 
relative to the axis y , it is possible to calculate the complete radiation pattern 
of the emitter examined. This diagram corresponds to the radiation pattern of 
dipole emission. 
Consequently 
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there is the being late vector potential, the Eg.  (3.5) can be rewritten 
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is again obtained complete agreement with the equations of the being late 
vector potential, but vector potential is introduced here not by phenomenolog-
ical method, but with the use of a concept of the being late scalar- vector po-
tential. Let us note one important circumstance. In the Maxwell equation 
electric fields it appears vortex. In this case the electric fields bear gradient 
nature. 



 

 Let us demonstrate the still one possibility, which gives Eg. (3.5). It is known 
that in the electrodynamics there is this concept, as the electric dipole and di-
pole emission. Two charges with the opposite signs have the dipole moment: 
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Therefore current can be expressed through the derivative of dipole moment 
on the time of 
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Substituting this equation into Eg.  (3.4), we obtain the law of the dipole 
emission 
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This is also known equation [1]. 
      In the process of fluctuating the electric dipole are created the electric 
fields of two forms. In addition to this, around the being varied dipole are 
formed the electric fields of static dipole, which change in the time in connec-
tion with the fact that the distance between the charges it depends on time. 
Energy of these pour on and it is expended on the emission. However, the 
summary value of field around this dipole at any moment of time defines as 
superposition pour on static dipole pour on emissions. 
      Laws (3.4), (3.5), (3.7) are the laws of the direct action, in which already 
there is neither magnetic pour on nor vector potentials. I.e. those structures, 
by which there were the magnetic field and magnetic vector potential, are al-
ready taken and they no longer were necessary to us. 
      Using Eg. (3.5) it is possible to obtain the laws of reflection and scattering 
both for the single charges and, for any quantity of them. In this case each 
moving charge emits the electric fields, determined by Eg.  (3.5). The super-
position of electrical pour on all charges in the distant zone and it is electrical 
wave. 

      If on the charge acts the electric field  
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tion takes the form of 
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the coefficient  
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emission of single charge in the assigned direction. 
The current wave of the displacement accompanies the wave of electric field: 
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If charge accomplishes its motion under the action of the electric field 

0
sinE E tω′ ′= , then bias current in the distant zone will be written down as 
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The sum wave, which presents the propagation of electrical pour on Eg. (3.8) 
and bias currents Eg. (3.9) can be named electrocurrent wave. 
It is possible to introduce also magnetic waves, assuming that 

0

E
j rotHtε

∂
= =∂

�
��

,                                     (3.10) 

0divH=
�

 

introduced thus magnetic field is vortex. Comparing Eg. (3.9) and Eg. (3.10) 
we obtain: 
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Integrating this relationship on the coordinate, we find the value of the mag-
netic field 
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     Thus, Egs.  (3.8), (3.9) and (3.11) can be named the laws of electrical in-
duction, since. they give the direct coupling between the electric fields, ap-
plied to the charge, and by fields and by currents induced by this charge in its 
environment.  Here charge plays the role of the transformer, which ensures 
this reemission. The magnetic field, which can be calculated with the aid of 
Eg.  (3.11), is directed normally both toward the electric field and toward the 
direction of propagation, and their relation at each point of the space is equal 
of 
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In this equation of Z  is wave drag of free space. 

      Wave drag determines the active power of losses on the single area, locat-
ed normal to the direction of propagation of the wave: 
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Therefore electrocurrent wave, crossing this area, transfers through it the 
power, determined by the data by relationship. This is located in accordance 
with by the Poynting theorem about the power flux of electromagnetic wave. 
Therefore, for finding all parameters, which characterize wave process, it is 
sufficient examination only of electrocurrent wave and knowledge of the 
wave drag of space. In this case it is in no way compulsory to introduce this 
concept as “magnetic field” and its vector potential, although there is nothing 
illegal in this. The fields, obtained thus, satisfy Helmholtz's theorem. This 
theorem says, that any single-valued and continuous vector field  F

�
, which 

turns into zero at infinity, can be represented uniquely as the sum of the gra-

dient of a certain scalar function  ϕ   and rotor of a certain vector function  C
�

, whose divergence is equal to zero: 
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Consequently, must exist clear separation pour on to the gradient and the 
vortex. It is evident that in the expressions, obtained for those induced pour 
on, this separation is located. Electric fields bear gradient nature, and mag-
netic - vortex. 
      Thus, the construction of electrodynamics should have been begun from 
the acknowledgement of the dependence of scalar potential on the speed. 
But nature very deeply hides its secrets, and in order to come to this simple 
conclusion, it was necessary to pass way by length almost into two centu-
ries. The grit, which so harmoniously were erected around the magnet poles, 
in a straight manner indicated the presence of some power pour on potential 
nature, but to this they did not turn attention. Therefore it turned out that all 
examined only tip of the iceberg, whose substantial part remained invisible 
of almost two hundred years. 
      Taking into account entire aforesaid one should assume that at the basis 
of the overwhelming majority of static and dynamic phenomena at the elec-
trodynamics only Eg. (3.1), which assumes the dependence of the scalar po-
tential of charge on the speed, lies. From this formula it follows and static 
interaction of charges, and laws of power interaction in the case of their mu-
tual motion, and emission laws and scattering. This approach made it possi-
ble to explain from the positions of classical electrodynamics such phenom-
ena as phase aberration and the transverse the Doppler effect, which within 
the framework the classical electrodynamics of explanation did not find.  
      Let us point out that one of the fundamental equations of induction Eg.  
(3.4) could be obtained directly from the Ampere law, still long before ap-
peared the Maksvell equation. The Ampere law, expressed in the vector form, 
determines magnetic field  



 

 

3

1
4

Idl r
H

rπ
×= ∫

� ��
 

 
In this equation I  - current, which flows through the element  
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3

[ ] 1 1dlr dl
grad dl rot rotdl

r r rr

  = × = −  
   

� �� � �
. 

But the rotor of dl
�

 is equal to zero therefore  

4 H

dl
H rot I rotA

rπ
 

= =∫  
 

�
��

. 

Consequently 

4H

dl
A I

rπ
 

=∫  
 

�
�

.                                       (3.12) 

The remarkable property of this expression is that that the vector potential 

depends from the distance to the observation point as 
1
r

. Specifically, this 

property makes it possible to obtain emission laws. 
        Since of I gv= , where g  the quantity of charges, which falls per unit 
of the length of conductor, from (3.12) we obtain: 
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For the single charge of e this equation takes the form: 
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In this equation a  is acceleration of charge. 
 

      This equation appears as follows for the single charge: 
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In Eg.  (3.13) and Eg.  (3.14) it is necessary to consider that the potentials are 

extended with the final speed they be late to the period  
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. Taking into ac-

count the fact that for the vacuum 2
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form: 
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      Eg.   (3.15) and Eg.  (3.16) represent wave equations and are the solu-
tions. Of the Maksvell equation, but in this case they are obtained directly 
from the Ampere law. To there remains only present the question, why elec-
trodynamics in its time is not banal by this method? 
  
 

4. Is there any dispersion of electric inductivities in material   media? 
 
 

      It is noted in the introduction that dispersion of electric and magnetic 
inductivities of  material media is a commonly accepted idea [11]. The idea 
is however not correct. 
      To explain this statement and to gain a better understanding of the phys-
ical essence of the problem, we start with a simple example showing how 
electric lumped-parameter circuits can be described. As we can see below, 
this example is directly concerned with the problem of our interest and will 
give us a better insight into the physical picture of  the electrodynamic pro-
cesses in material media. 
      In a parallel resonance circuit including a capacitor С and an inductance 
coil L, the applied voltage U and the total current IΣ through the circuit are 
related as 
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current through the inductance coil. For the harmonic voltage U = U0 sin ωt  
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The term in brackets is the total susceptance σх  of the circuit, which consists 
of the capacitive σс and inductive σL   components 
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Eq. (4.1) can be re-written as 
2
0
2 0

1 cosI C U t
ωω ω
ωΣ

 = − 
 

, 

where 2
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LC

ω =  is the resonance frequency of a parallel circuit. 

      From the mathematical (i.e. other than physical) standpoint, we may as-
sume a circuit that has only a capacitor and no inductance coil. Its frequency 
– dependent capacitance is 
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Another approach is possible, which is correct too.  
      Eq. (4.1) can be re-written as 
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In this case the circuit is assumed to include only an inductance coil and no 
capacitor. Its frequency – dependent inductance is 
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 .                                        (4.3) 

Using the notion Eqs. (4.2) and (4.3), we can write 

0
( ) cosI C U tω ω ωΣ

∗= ,                                  (4.4) 

or 
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Eqs (4.4) and (4.5) are equivalent and each of them provides a complete 
mathematical description of the circuit. From the physical point of view, 

( )C ω∗  and ( )L ω∗
 do not represent capacitance and inductance though they 

have the corresponding dimensions. Their physical sense is as follows: 

( ) XC
σ

ω ω
∗ =  , 

i.e. ( )C ω∗  is the total susceptance of this circuit divided by frequency: 
1

( )
X

L ω ω σ
∗ =  , 

and ( )L ω∗  is the inverse value of the product of the total susceptance and the 
frequency. 
      Amount ( )C ω∗  is constricted mathematically so that it includes C and L 

simultaneously. The same is true for ( )L ω∗ . 
      We shall not consider here any other cases, e.g., series or more complex 
circuits. It is however important to note that applying the above method, any 
circuit consisting of the reactive components C and L can be described ei-
ther through frequency – dependent inductance or frequency – dependent 
capacitance. 
      But this is only a mathematical description of real circuits with constant 
– value reactive elements.  
      It is well known that the energy stored in the capacitor and inductance 
coil can be found as 
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      But what can be done if we have ( )C ω∗  and ( )L ω∗ ? There is no way of 
substituting them into Eqs. (4.6) and (4.7) because they can be both positive 
and negative. It can be shown readily that the energy stored in the circuit 
analyzed is  
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or 

2

1

( )1
2

d
L

W U
d

ω ω
ωΣ

∗

 
  
 = ⋅                                (4.10) 

 
Having written Eqs. (4.8), (4.9) or (4.10) in greater detail, we arrive at the 
same result: 

2 21 1
2 2

W CU LIΣ = + . 

where U is the voltage at the capacitor and I is the current through the in-
ductance coil. Below we consider the physical meaning jog the magnitudes 
ε(ω) and µ(ω) for material media. 
      A superconductor is a perfect plasma medium in which charge carriers 
(electrons) can move without friction. In this case the equation of motion is 

dV
m eE

dt
=
�
�

,                                          (4.11) 

where m and e are the electron mass and charge, respectively; E
�
 is the elec-

tric field strength, V
�
 is the velocity. Taking into account the current density 

j neV=
��

,                                           (4.12) 
we can obtain from Eq. (4.11)  
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In Eqs. (4.12) and (4.33) n is the specific charge density. Introducing the 
notion 

2k
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L
ne
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we can write 
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L
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 .                                 (4.15) 

Here Lk is the kinetic inductivity of the medium. Its existence is based on the 
fact that a charge carrier has a mass and hence it possesses inertia properties. 

       For harmonic fields we have 0sinE E tω=
� �

 and Eq. (4.15) becomes 

0

1
cos

L
k

j E t
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ωω= −
�

.                            (4.16) 

Eqs. (4.15) and (4.16) show that Lj
�

 is the current through the inductance 
coil. 
      In this case the Maxwell equations take the following form 
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where ε0  and µ0 are the electric and magnetic inductivities in vacuum, Cj
�

 

and Lj
�

 are the displacement and conduction currents, respectively. As was 

shown above, Lj
�

 is the inductive current. 
      Eq. (4.17) gives 
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For time-independent fields, Eq. (4.18) transforms into the London equation 
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 , 

where 
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0
L

kL
λ µ=  is the London depth of penetration. 

      As Eq. (4.17) shows, the inductivities of plasma (both electric and mag-
netic) are frequency – independent and equal to the corresponding parame-
ters for vacuum. Besides, such plasma has another fundamental material 
characteristic – kinetic inductivity. 
      Eqs. (4.17) hold for both constant and variable fields. For harmonic 

fields 0
sinE E tω=

� �
, Eq. (4.17) gives 
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Taking the bracketed value as the specific susceptance σx of plasma, we can 
write 

0 cosXrot H E tσ ω=
� �

 ,                                                   (4.20) 
where  
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and 
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, where 
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=  is the plasma frequency. 

Now Eq. (4.20) can be re-written as 
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or 
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The ε*(ω) –parameter is conventionally called the frequency-dependent 
electric inductivity of plasma. In reality however this magnitude includes 
simultaneously the electric inductivity of vacuum aid the kinetic inductivity 
of plasma. It can be found as 

( ) Xσε ω
ω

∗ =   . 

It is evident that there is another way of writing σХ   
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where 
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Lk*(ω) written this way includes both ε0 and Lk. 
      Eqs. (4.21) and (4.22) are equivalent, and it is safe to say that plasma is 
characterized by the frequency-dependent kinetic inductance Lk*(ω) rather 
than by the frequency-dependent  electric inductivity ε*(ω). 
      Eq. (4.19) can be re-written using the parameters ε*(ω) and Lk*(ω)  
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Eqs. (4.23) and (4.24) are equivalent. 
      Thus, the parameter ε*(ω) is not an electric inductivity though it has its 
dimensions. The same can be said about Lk*(ω). 
      We can see readily that 

* ( ) Xσ
ε ω ω= , 

1
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X
kL ω

σ ω
∗ =  . 

These relations describe the physical meaning of ε*(ω) and Lk*(ω). 
      Of course, the parameters ε*(ω) and Lk*(ω) are hardly usable for calcu-
lating energy by the following equations 
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For this purpose the Eq. (4.19)-type fotmula was devised in [11]: 
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Using Eq. (4.25), we can obtain 
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The same result is obtainable from 
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As in the case of a parallel circuit, either of  the parameters ε*(ω) and 
Lk*(ω), similarly to  C*(ω) and L*(ω), characterize completely the electro-
dynamic properties of plasma. The case 
 

ε*(ω) = 0 
Lk*(ω) = ∞ 

 
corresponds to the resonance of current. 
      It is shown below that under certain conditions this resonance can be 
transverse with respect to the direction of electromagnetic waves. 
      It is known that the Langmuir resonance is longitudinal. No other reso-
nances have ever been detected in nonmagnetized plasma. Nevertheless, 
transverse resonance is also possible in such plasma, and its frequency coin-
cides with that of the Langmuir resonance. To understand the origin of the 
transverse resonance, let us consider a long line consisting of two perfectly 
conducting planes (see Fig. 5). First, we examine this line in vacuum. 
 
      If a d.c. voltage (U) source is connected to an open line the energy 
stored in its electric field is  

2 2

0

1 1
2 2E EW E abz C UεΣ Σ= = , 
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=  is the electric field strength in the line, and  
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is the total line capacitance. 0E
b

C
a

ε=  is the linear capacitance and ε0 is 

electric inductivities of the medium (plasma) in SI units (F/m). 
      The specific potential energy of the electric field is 
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Fig. 5.  Two-conductor line consisting of two perfectly conducting planes. 
                                                  
      If the line is short-circuited at the distance z from its start and connected 
to a d.c. current (I) source, the energy stored in the magnetic field of the line 
is  
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Since  
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= , we can write 
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where LHΣ is the total inductance of the line 0H

a
L

b
µ=  is linear inductance 

and µ0 is the inductivity of the medium (vacuum) in SI (H/m). 
      The specific energy of the magnetic field is 
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      To make the results obtained more illustrative, henceforward, the meth-
od of equivalent circuits will be used along with mathematical description. 
It is seen that CЕΣ and LHΣ increase with growing z. The line segment dz can 
therefore be regarded as an equivalent circuit (Fig. 6а). 
      If plasma in which charge carriers can move free of friction is placed 
within the open line and then the current  I, is passed through it, the charge 
carriers moving at a certain velocity start storing kinetic energy. Since the 
current density is 
 

I
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the total kinetic energy of all moving charges is 
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On the other hand, 
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where LkΣ is the total kinetic inductance of the line. Hence, 
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Thus, the magnitude 
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L
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=                                           (4.27)  

 
corresponding kinetic inductivity of the medium. 
 
      Earlier, we introduced this magnitude by another way (see Eq. (4.14)). 
Eq. (4.27) corresponds to case of uniformly distributed d.c. current. 
       



 

 
 
 
Fig. 6.  а. Equivalent circuit of the two-conductor line segment;  б. Equiva-
lent circuit of the two-conductor line segment containing nondissipative 
plasma; в. Equivalent circuit of the two-conductor line segment containing 
dissipative plasma. 
 
As we can see from Eq. (4.26), LHΣ , unlike CЕΣ and LkΣ , decreases when z 
grows. This is clear physically because the number of parallel-connected 
inductive elements increases with growing z.  The equivalent circuit of the 
line with nondissipative plasma is shown in Fig. 6б. The  
line itself is equivalent to a parallel lumped circuit:  
 

0bz
C

a

ε= , kL a
L

bz
= . 

 
It is however obvious from calculation that the resonance frequency is abso-
lutely independent of whatever dimension. Indeed, 
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This brings us to a very interesting result: the resonance frequency of the 
macroscopic resonator is independent of its size. It may seem that we are 
dealing here with the Langmuir resonance because the obtained frequency 
corresponds exactly to that of the Langmuir resonance. We however know 
that the Langmuir resonance characterizes longitudinal waves. The wave 
propagating in the phase velocity in the z-direction is equal to infinity and 
the wave vector is 0kz=

�
, which corresponds to the solution of Eqs. (4.17) 



 

for a line of pre-assigned configuration (Fig. 5). Eqs. (4.18) give a well-
known result. The wave number is 
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The group and phase velocities are 
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where 
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µ ε
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 is the velocity of light in vacuum. 

      For the plasma under consideration, the phase velocity of the electro-
magnetic wave is equal to infinity. Hence, the distribution of the fields and 
currents over the line is uniform at each instant of time and independent of 
the z-coordinate. This implies that, on the one hand, the inductance LHΣ has 
no effect on the electrodynamic processes in the line and, on the other hand, 
any two planes can be used instead of conducting planes to confine plasma 
above and below.  
      Eqs. (4.28) , (4.29) and (4.30) indicate that we have transverse resonance 
with an infinite Q-factor. The fact of transverse resonance, i.e. different 
from the Langmuir resonance, is most obvious when the Q-factor is not 
equal to infinity. Then kz ≠ 0 and the transverse wave is propagating in the 
line along the direction perpendicular to the movement of charge carriers. 
True, we started our analysis with plasma confined within two planes of a 
long line, but we have thus found that the presence of such resonance is en-
tirely independent of the line size, i.e. this resonance can exist in an infinite 
medium. Moreover, in infinite plasma transverse resonance can coexist with 
the Langmuir resonance characterizing longitudinal waves. Since the fre-
quencies of these resonances coincide, both of them are degenerate. Earlier, 
the possibility of transverse resonance was not considered. To approach the 
problem more comprehensively, let us analyze the energy processes in loss-
free plasma. 
      The characteristic resistance of plasma determining the relation between 
the transverse components of electric and magnetic fields can be found from 
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where 0

0
0Z

µ
ε

=  is the characteristic resistance in vacuum. 

      The obtained value of Z is typical for transverse electromagnetic waves 
in waveguides. When ω → ωρ, Z → ∞, and Hx → 0. At ω > ωρ, both the 
electric and magnetic field components are present in plasma. The specific 
energy of the fields is  
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Thus, the energy accumulated in the magnetic field is 
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 times lower 

than that in the electric field. This traditional electrodynamic analysis is 
however not complete because it disregards one more energy component – 
the kinetic energy of charge carriers. It turns out that in addition to the elec-
tric and magnetic waves carrying electric and magnetic energy, there is one 
more wave in plasma – the kinetic wave carrying the kinetic energy of 
charge carriers. The specific energy of this wave is  
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The total specific energy thus amounts to 
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Hence, to find the total specific energy accumulated in unit volume of plas-
ma, it is not sufficient to allow only for the fields Е and Н. 
      At the point ω = ωρ 

WH = 0 
WE = Wk , 

                          
i.e. there is no magnetic field in the plasma, and the plasma is a macroscopic 
electromechanical cavity resonator of frequency ωρ.. 
      At ω > ωρ the wave propagating in plasma carries three types of energy 
– magnetic, electric and kinetic. Such wave can therefore be-called magne-

toelectrokinetic. The kinetic wave is a current-density wave 
1

k
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L
= ∫

��
. It 

is shifted by π/2 with respect to the electric wave. 
      Up to now we have considered a physically unfeasible case with no 
losses in plasma, which corresponds to infinite Q-factor of the plasma reso-
nator. If losses occur, no matter what physical processes caused them, the 
Q-factor of the plasma resonator is a final quantity. For this case the Max-
well equations become 
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The term σр.efE
�

 allows for the loss, and the index ef  near the active conduc-
tivity emphasizes that we are interested in the fact of loss and do not care of 
its mechanism. Nevertheless, even though we do not try to analyze the phys-
ical mechanism of loss, we should be able at least to measure σр.ef. 
      For this purpose, we choose a line segment of the length z0 which is 
much shorter than the wavelength in dissipative plasma. This segment is 
equivalent to a circuit with the following lumped parameters 
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where G  is the conductance parallel to C and L. 
The conductance  G and the Q-factor of this circuit are related as  
 

1 C
G

Q Lρ
=   .                                       (4.35) 

Taking into account Eqs. (4.32) – (4.34), we obtain from Eq. (5.25) 
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Thus, σр.ef. can be found by measuring the basic Q-factor of the plasma res-
onator. 
      Using Eqs. (4.36) and (4.31), we obtain 
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The equivalent circuit of this line containing dissipative plasma is shown in 
Fig. 6в. 
      Lot us consider the solution of Eqs. (4.37) at the point ω = ωp. Since 
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We obtain 
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The solution of these equations is well known. If there is interface between 
vacuum and the medium described by Eqs. (4.38), the surface impedance of 
the medium is 
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      There is of course some uncertainty in this approach because the surface 
impedance is dependent on the type of the field-current relation (local or 
non-local). Although the approach is simplified, the qualitative results are 
quite adequate.  
      There is however another reason for this serious mistake in the present-
day physics [7] as an example. This study states that there is no difference 
between dielectrics and conductors at very high frequencies. On this basis 
the authors suggest the existence of a polarization vector in conducting me-
dia and this vector is introduced from the relation 
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where n is the charge carrier density, mr
�

 is the current charge displacement. 
This approach is physically erroneous because only bound charges can po-
larize and form electric dipoles when the external field overcoming the at-
traction force of the bound charges accumulates extra electrostatic energy in 
the dipoles. In conductors the charges are not bound and their displacement 
would not produce any extra electrostatic energy. This is especially obvious 
if we employ the induction technique to induce current (i.e. to displace 
charges) in a ring conductor. In this case there is no restoring force to act 
upon the charges, hence, no electric polarization is possible. In  [7] the po-
larization vector found from Eq. (4.39) is introduced into the electric induc-
tion of conducting media 
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where the vector P
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 of a metal is obtained from Eq. (4.39), which is wrong. 
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Thus, the total accumulated energy is 
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However, the second term in the right-hand side of Eq. (4.40) is the kinetic 
energy (in contrast to dielectrics for which this term is the potential energy). 
Hence, the electric induction vector D*(ω) does not correspond to the phys-
ical definition of the electric induction vector. 

      The physical meaning of the introduced vector( )P ω∗�  is clear from 
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The interpretation of ε(ω) as frequency-dependent inductivity has been 
harmful for correct understanding of the real physical picture (especially in 
the educational processes). Besides, it has drawn away the researchers atten-
tion from some physical phenomena in plasma, which first of all include the 
transverse plasma resonance and three energy components of the magnetoe-
lectrokinetic wave propagating in plasma. 
      Below, the practical aspects of the results obtained are analyzed, which 
promise new data and refinement of the current views.  
      Plasma can be used first of all to construct a macroscopic single-
frequency cavity for development of a new class of electrokinetic plasma 
lasers. Such cavity can also operate as a band-pass filter.  
      At high enough pQ  the magnetic field energy near the transverse reso-

nance is considerably lower than the kinetic energy of the current carriers 



 

and the electrostatic field energy. Besides, under certain conditions the 
phase velocity can much exceed the velocity of light. Therefore, if we want 
to excite the transverse plasma resonance, we can put 

0
0

0,

1 1
,CT

p k k

rot E

E
E E dt j

Q L t L

ε ∂ε
∂

≅

+ + =∫

�

�
� � �  

where CTj
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  is the extrinsic current density. 

Integrating Eq. (4.41) over time and dividing it by ε0 obtain 
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Integrating Eq. (4.42) over the surface normal to the vector E
�

 and taking 
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 we have 
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where ICT  is the extrinsic current. 
       Eq. (4.43) is the harmonic oscillator equation whose right-hand side is 
typical of two-level lasers [12]. If there is no excitation source, we have a 
“cold”.  
 
5. Dielectric media 
 
         Anywhere in the existing literature there are no instructions that kinetic 
inductance of carriers of charges plays any role in electrodynamics processes 
in dielectrics. It is not so. It appears that this parameter in electrodynamics of 
dielectrics plays not less important role, than in electrodynamics of conduc-
tors[8,9]. We will consider the simplest case when oscillatory processes in 
atoms or dielectric molecules submit to laws mechanical of oscillator 
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where  mr
�

 - a deviation of charges from balance position, and β  - the factor 

of elasticity characterizing elasticity of electric forces of communication of 
charges in atoms and molecules. Entering resonant frequency of the connect-
ed charges 
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from Eg. (5.1) can write 
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It is visible that in the ratio (5.2) as parameter there is a frequency of own 
fluctuations which includes weight of a charge. It means that inertial proper-
ties of fluctuating charges will influence oscillatory processes in atoms and 
molecules. 
     As the general density of a current in the environment consists of a current 
of displacement and conductivity current 
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That, finding speed of carriers of charges in a dielectric as a derivative of 
their displacement on coordinates 
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From Eg. (5.2) it is found 

0 2 2
0

1
( )kd

E E
rotH j

t tL
ε

ω ω∑

∂ ∂= = −∂ ∂−

� �
� �

.                (5.3) 

But value 
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represents that other as kinetic inductance of the charges which are a part of 
atoms or molecules of dielectrics, in the event that to consider their free. 
Therefore Eg. (5.3) can be copied 
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As value 
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represents plasma frequency of charges in atoms and dielectric molecules if 
to consider these charges free Eg. (5.4) becomes: 
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And, of course, again there is a temptation to name value 
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dielectric permeability of a dielectric depending on frequency. But it, as well 
as in case of conductors, it is impossible to do, as it is the modular parameter 
including already three parameters not dependent on frequency: dielectric 
permeability of vacuum, own frequency of atoms or the molecules which are 
a part of a dielectric, and plasma frequency for carriers of the charges enter-
ing into its structure if to consider their free. 
     Let's consider two limiting cases. 
If 0ω ω≪ , from Eg. (5.5) can write 
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In this case the factor facing a derivative, doesn't depend on frequency, and 
represents static dielectric permeability of a dielectric. As we see, it depends 
on own frequency of fluctuations of atoms or molecules and from plasma fre-
quency. This result is clear. Frequency in this case appears so low that charg-
es have time to follow a field and their inertial properties don't influence elec-
trodynamics processes. In this case expression in brackets in the right part of 
Eg. (5.7) represents static dielectric permeability of a dielectric. Apparently it 
depends on own frequency of fluctuations of atoms or molecules of a dielec-
tric and from plasma frequency. From here at once we have the recipe for 



 

creation of dielectrics with high dielectric permeability. To reach it, it is nec-
essary to pack in the set volume of space the maximum quantity of molecules 
with as much as possible soft communications between charges in the mole-
cule. 
     The case, when 0ω ω≫  is indicative. Then 
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and before our eyes the dielectric has turned to a conductor (plasma) since the 
received parity in accuracy coincides with the equation describing plasma. 
It is necessary to notice that circumstance that in this case anywhere such 
concept as a polarization vector again wasn't used, and consideration is spent 
by a finding of real currents in dielectrics on the basis of the equation of 
movement of charges in these environments. Thus as parameters electric 
characteristics of environment which don't depend on frequency are used. 
     From Eg. (5.5) it is visible that in case of performance of equality 0ω ω=  

the amplitude of fluctuations is equal to infinity. It means resonance presence 
in this point. The infinite amplitude of fluctuations takes place for the reason 
that  weren't considered losses in resonant system, thus its good quality is 
equal to infinity. In any approach it is possible to consider that below the 
specified point we deal with a dielectric at which dielectric permeability is 
equal to its static value. Above this point we deal already actually with metal 
at which the density of carriers of a current is equal to density of atoms or 
molecules in a dielectric. 
     Now it is possible to consider the problem from the electrodynamics point 
of view on why the dielectric prism decomposes polychromatic light to mon-
ochromatic components or why the rainbow is formed. That it took place it is 
necessary to have frequency dependence of phase speed (dispersion) of elec-
tromagnetic waves in the considered environment. If  Eg. (5.5) to add the first  
Maksvell equation we can write 
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Whence at once it is found the wave equation: 
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If to consider that 
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where  c  - a velocity of light already anybody won't have a doubt that at dis-
tribution of electromagnetic waves to dielectrics the frequency dispersion of 
phase speed will be observed. But this dispersion will be connected not by 
that such material parameter as dielectric permeability, depends on frequency, 
and will take part in formation of this dispersion at once three, not dependent 
on frequency, physical values: own resonant frequency of atoms or mole-
cules, plasma frequency of charges if to consider their free, and dielectric 
permeability of vacuum. 



 

     Now we will show, where also what errors trap us, if at the decision of the 
considered problem to use concept of a vector of polarization. We will enter a 
polarization vector  
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Its dependence on frequency, is connected with presence of weight at the 
charges which are a part of atoms and molecules of dielectrics. The lag ef-
fect of charges doesn't allow this vector, following electric field, to reach 
that value which it would have in static fields. As the electric induction is 
defined by an equation: 
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That the induction entered thus depends on frequency. 
If it to enter now into the second equation of Maksvell it will become: 
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where  j
∑
 - the total current flowing through the sample. In Eg.(9.9) right 

parts first a member represents a displacement current in vacuum, and the 
second – the current connected with presence of connected charges in atoms 
or molecules of a dielectric. In this expression there was again a specific ki-
netic inductance of the charges participating in oscillatory process 
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The given kinetic inductance defines inductance of the connected charges. 
Hence 
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Expression in accuracy is received coincides with Eg. (9.3). Hence, the con-
sideration end result coincides in both ways, and from the mathematical point 
of view of claims to a method isn't present. But from the physical point of 
view, and especially regarding assignment to the parameter entered according 
to Eg. (9.8) names of an electric induction, there are big claims which we 
have already discussed. Certainly, it not an electric induction, and a certain 
modular parameter. But, without having understood a question essence, all 
have started to consider that dielectric permeability of dielectrics depends on 
frequency. As a matter of fact, introduction of an electric induction in dielec-
trics only in static electric fields is physically well-founded. 
     Let's show that the equivalent scheme of a dielectric in this case represents 
a consecutive resonant contour at which inductance is kinetic inductancekdL , 

and the capacity is equal to static dielectric permeability of a dielectric minus 
capacity of equal dielectric permeability of vacuum. Thus the contour appears 
bridged in the capacity equal to specific dielectric permeability of vacuum. 
For the proof of it we will consider a consecutive oscillatory contour when 
inductance L  and capacityC  are included consistently. 



 

     Communication between a current CI  flowing through capacityC , and 

the voltage CU  enclosed to it, is defined by equations: 

1
C CU I dt

C
= ∫  

and 

C
C

dU
I C

dt
= .                                           (5.10) 

For inductance this communication we can write: 
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If the current flowing through a consecutive contour, changes under the law 

0 sinI I tω= power failure on inductance and capacity accordingly will make 
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In this parity the value standing in brackets, represents jet resistance of a con-
secutive resonant contour which depends on frequency. The pressure generat-
ed on capacity and inductance, are in an antiphase, and, depending on fre-
quency, the contour can have whether inductive, whether capacitor jet re-
sistance. In a resonance point total jet resistance of a contour to equally zero. 
     It is obvious that communication between the total enclosed pressure and a 
current flowing through a contour, will be defined by a equation 
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Considering that resonant frequency of a contour 
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let's write down 
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Comparing this expression to Eg. (5.10) it is easy to see that the consecutive 
resonant contour consisting of inductance L  and capacityC , it is possible to 
present in the form of capacity dependent on frequency 
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Such representation at all doesn't mean that inductance somewhere is lost. 
Simply it enters into resonant frequency of a contour 0ω . Eg. (5.12) it only the 

mathematical form of record of Eg. (5.11). Hence, ( )C ω  it is a certain modu-
lar mathematical parameter which isn't contour capacity. 
     Eg. (5.11) can be copied and in another way: 
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Certainly, the parameter ( )C ω entered according Egs. (5.13) and (5.14) any 
relations to capacity has no. 
     Let's consider Eg. (5.12) for two limiting cases: 
1. When  0ω ω≪  it is had 

U
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. 

This result is clear, since on low frequencies jet resistance of the inductance 
included consistently with capacity, much less capacitor and it is possible not 
to consider. 
2. For a case when 0ω ω≫ , we have 
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Considering that for a harmonious signal 
2U

U dt
t

ω∑
∑

∂ =− ∫∂
. 

From Eg. (5.15) we obtain 
1
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In this case jet resistance of capacity is much less, than at inductance and the 
chain has inductive resistance. 
     The carried out analysis says that in practice is very difficult to distinguish 
behavior of resonant contours from pure inductance or capacity, especially far 
from a resonance where differences practically are absent. To understand true 
structure of an investigated chain it is necessary to remove the peak and phase 
characteristic of such chain in a range of frequencies. In case of a resonant 
contour such dependence will have typical resonant character when on either 
side of a resonance character of jet resistance will be a miscellaneous. How-
ever it doesn't mean that real elements of a contour: the capacity or induct-
ance depends on frequency. 
     The equivalent scheme of the dielectric located between planes of a long 
line is shown on Fig. 7.  
     In – the equivalent scheme of a piece of a line for all range of frequencies. 
On fig. 7 (б) and 7 (в) two limiting cases are shown. In the first case when

0ω ω≫ ,the dielectric on the properties corresponds to a conductor, in the sec-

ond case when 0ω ω≪ , corresponds to a dielectric possessing static dielectric 

permeability 
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       Thus, it is possible to draw a conclusion that the introduction, dielectric 
permeability of dielectrics depending on frequency, is also a physical and 
terminological error. If it is a question of dielectric permeability of dielectrics 
with which accumulation of potential energy speech can go only about static 
permeability is connected. And this parameter as a constant which is not de-
pendent on frequency, is included into all parities characterizing electrody-
namics characteristics of dielectrics. 
 

 
 
Fig. 7. And б- the equivalent scheme of a piece of the line filled with a dielec-
tric, for a case 0ω ω≫ ; в- the equivalent scheme of a piece of a line for a case 

0ω ω≪ . 

 
     The most interesting results of application of such new approaches take 
place for dielectrics. In this case each connected pair of charges represents 
separate unitary unit with the individual characteristics and its participation 
in processes of interaction with an electromagnetic field (if not to consider 
communication between separate steams) strictly individually. Certainly, in 
dielectrics not all dipoles have different characteristics, and there are various 
groups with similar characteristics, and each group of the connected charges 
with identical characteristics will resound on the frequency. And intensity of 
absorption, and in wild spirits and radiations, on this frequency will depend 
on relative quantity of pairs the given grade. And consequently can be en-
tered partial the factors considering their statistical weight in such process. 
Besides, these processes will be influenced by anisotropy of dielectric prop-
erties of the molecules having certain electric orientation in a crystal lattice. 
These circumstances also define that variety of resonances and them intensi-



 

ty which is observed in dielectric environments. Even more difficult struc-
ture is got by absorption or radiation lines when there is an electric commu-
nication between separate groups of radiators. In this case lines can turn to 
strips. Such individual approach to each separate grade of the connected 
pair’s charges couldn't be carried out in frameworks before existing ap-
proaches. 
 
 
6. Magnetic media 
 
      The resonance phenomena in plasma and dielectrics are characterized by 
repeated electrostatic-kinetic and kinetic-electrostatic transformations of the 
charge motion energy during oscillations. This can be described as an elec-
trokinetic process, and devices based on it (lasers, masers, filters, etc.) can 
be classified as electrokinetic units. 
      However, another type of resonance is also possible, namely, magnetic 
resonance. Within the current concepts of frequency-dependent permeabil-
ity, it is easy to show that such dependence is related to magnetic resonance. 
For example, let us consider ferromagnetic resonance. A ferrite magnetized 
by applying a stationary field  Н0 parallel to the z-axis will act as an aniso-
tropic magnet in relation to the variable external field. The complex perme-
ability of this medium has the form of a tensor [13]: 
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Ω= |γ| Н0.                                                (6.1) 

 
Being the natural professional frequency, and  
 

М0 = µ0(µ−1)Н0                                          (6.2) 
 

is the medium magnetization. 

Taking into account Eqs. (6.1) and (6.2) for ( )Tµ ω∗
, we can write 
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Assuming that the electromagnetic wave propagates along the x-axis and 
there are Нy  and Нz components, the first Maxwell equation becomes  
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Taking into account Eq. (6.3), we obtain 
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For ω>>Ω 
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Eq. (6.4) gives 
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The quantity 
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can be described as kinetic capacitance. What is its physical meaning? If the 
direction of the magnetic moment does not coincide with that of the external 
magnetic field, the vector of the moment starts precessional motion at the 
frequency Ω about the magnetic field vector. The magnetic moment m

�
 has 

the potential energy mU m B= − ⋅
��

. Like in a charged condenser, Um  is the 
potential energy because the precessional motion is inertialess (even though 
it is mechanical) and it stops immediately when the magnetic field is lifted. 
In the magnetic field the processional motion lasts until the accumulated 
potential energy is exhausted and the vector of the magnetic moment be-
comes parallel to the vector 0H

�
. 

      The equivalent circuit for this case is shown in Fig. 8. Magnetic reso-
nance occurs at the point ω = Ω and µт* (ω) → −∞. It is seen that the reso-
nance frequency of the macroscopic magnetic resonator is independent of 
the line size and equals Ω. 
      Thus, the parameter 
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is not a frequency-dependent permeability. According to the equivalent cir-
cuit in  
Fig. 8, it includes µ0, µ and Сk                                                                                                                              
                  



 

 
                                                                                                                                                                                                                   
Рис. 8.  Equivalent circuit of  two-conductor line including a magnet. 
 
It is easy to show that three waves propagate in this case-electric, magnetic 
and a wave carrying potential energy of the precessional motion of the mag-

netic moments about the vector 0H
�

. The systems in which these types of 

waves are used can also be described as electromagnetopotential devices. 
 
Conclusion 

 
      Thus, it has been found that along with the fundamental parameters εε0 
and µµ0 characterizing the electric and magnetic energy accumulated and 
transferred in the medium, there are two more basic material parameters Lk 
and Ck. They characterize kinetic and potential energy that can be accumu-
lated and transferred in material media. Lk was sometimes used to describe 
certain physical phenomena, for example, in superconductors [6], Ck has 
never been known to exist. These four fundamental parameters εε0, µµ0, Lk 
and Ck clarify the physical picture of the wave and resonance processes in 
material media in applied electromagnetic fields. Previously, only electro-
magnetic waves were thought to propagate and transfer energy in material 
media. It is clear now that the concept was not complete. In fact, magnetoe-
lectrokinetic, or electromagnetopotential waves travel in material media. 
The resonances in these media also have specific features. Unlike closed 
planes with electromagnetic resonance and energy exchange between elec-
tric and magnetic fields, material media have two types of resonance – elec-
trokinetic and magnetopotential. Under the electrokinetic resonsnce the en-
ergy of the electric field changes to kinetic energy. In the case of magne-
topotential resonance the potential energy accumulated during the preces-
sional motion can escape outside at the precession frequency. 
      The notions of permittivity and permeability dispersion thus become 
physically groundless though ε∗(ω) and µ∗(ω) are handy for a mathematical 
description of the processes in material media. We should however remem-
ber their  
true meaning especially where educational processes are involved. 
       It is surprising that Eq. (3.29) actually accounts for the whole of elec-
trodynamics beause all current electrodynamics problems can be solved us-
ing this equation. What is then a magnetic field? This is merely a convenient 
mathematical procedure which is not necessarily gives a correct result (e.g., 



 

in the case of parallel-moving charges). Now we can state that electrocur-
rent, rather than electromagnetic, waves travel in space. Their electric field 
and displacement current vectors are in the same plane and displaced by π/2. 
      In terms of Eq. (3.29), electrodynamics and optics can be reconstructed 
completely to become simpler, more intelligible and obvious. 
      The main ideas of this approach were described in the author’s publica-
tions [5-10] However, the results reported have never been used, most likely 
because they remain unknown. The objective of this study is therefore to 
attract more attention to them.       
      Any theory is dead unless important practical results are obtained of its 
basis. The use of the previously unknown transverse plasma resonance is 
one of the most important practical results following from this study. 
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