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Abstract

In the contemporary classical electrodynaneixsts many unresolved
problems. The law of the induction of Faraday doesdescribe all known
manifestations of induction. Unipolar generatoexgeption. Incomprehen-
sible is the physical cause for induction. Longdimas considered that such
material parameters, as dielectric and magnetistaohthey can depend on
frequency. It turned out that this not thus. To éiamination this problems
Is dedicated the article.
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1. Introduction

Until now, some problems of classical eledymamics involving the
laws of electromagnetic induction have been intdgul in a dual or even
contraversal way.

As an example, let us consider how the horawpoperation is ex-
plained in different works. In [1] this is done ngithe Faraday low speci-
fied for the “discontinuous motion” case. In [BEetrule of flow is rejected
and the operation of the homopolar generator isagngd on the basis of the
Lorentz force acting upon charges.

The contradictory approaches are most evidefeynman’'s work [2]
(see page 53}he rule of flow states that the contour e.m.fegsial to the
opposite-sign rate of change in the magnetic fhueugh the contour when
the flux varies either with the changing field arecto the motion of the con-
tour (or to both). Two options — “the contour moves “the field changes”
are indistinguishable within the rule. Neverthelea® use these two com-

pletely different laws to explain the rule for ttveo cases: [VXE] for the
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“moving contour” and DXE=—E for the “changing field”.And further on:

There is hardly another case in physics when algirapd accurate general
law has to be interpreted in terms of two differphenomena. Normally,
such beautiful generalization should be based oundied fundamental
principle. Such principle is absent in our casle interpretation of the Far-
aday law in [2] is also commonly acceptdtaraday’s observation led to
the discovery of a new law relating electric andgmetic fields: the electric
field is generated in the region where the magniikd varies with time.
There is however an exception to this rule toougfiothe above studies do
not mention it. However, as soon as the currertuidin such a solenoid is
changed, an electric field is excited externallye Exception seem to be too
numerous. The situation really causes concern vgheh noted physicists
as Tamm and Feynman have no common approach teetamingly simple
question.

It is knowing [3] that classical electrodyniamfails to explain the phe-
nomenon of phase aberration. As applied to propagalf light, the phe-
nomenon can be explained only in terms of the spélceory of relativity
(STR). However, the Maxwell equations are invaraith respect to the
covariant STR transformations, and there is theeeéwvery reason to hope
that they can furnish the required explanatiorhefghenomenon.

It is well known that electric and magneticuctivities of material me-
dia can depend on frequency, i.e. they can exfiispersion. But even
Maxwell himself, who was the author of the basicapns of electrody-
namics, believed that and p were frequency-independent fundamental
constants.

How the idea of andp-dispersion appeared and evolved is illustrated
vividly in the monograph of well-known specialists physics of plasma
[4]: while working at the equations of electrodynamitsnaterial, media,
G. Maxwell looked upon electric and magnetic indittés as constants
(that is why this approach was so lasting). Muctedaat the beginning of
the XX century, G. Heavisidr and R.Wull put forwé#ndir explanation for
phenomena of optical dispersion (in particular faaw) in which electric



and magnetic inductivities came as functions afdency. Quite recently, in
the mid-50ies of the last century, physicists &aiat the conclusion that
these parameters were dependent not only on tqedrey but on the wave
vector as well. That was a revolutionary breakavirayn the current con-

cepts. The importance of the problem is clearlysitated by what hap-
pened at a seminar held by L. D. Landau in 195%rethe interrupted A.

L. Akhiezer reporting on the subject: “Nonsense, éfractive index cannot
be a function of the refractive index”. Note, thnas said by L. D. Landau,
an outstanding physicist of our time

What is the actual situation? Running ahéan admit that Maxwell
was right: botre andp are frequency — independent constants characteriz-
ing one or another material medium. Since disparsioelectric and mag-
netic inductivities of material media is one of thasic problems of the pre-
sent — day physics and electrodynamics, the systenews on these ques-
tions has to be radically altered again (for theosd time!).

In this context the challenge of this studgswo provide a comprehen-
sive answer to the above questions and thus teeaatia unified and unam-
biguous standpoint. This will certainly requireevision of the relevant in-
terpretations in many fundamental works.

1. Equations of electromagnetic induction in moving coor dinates

The Maxwell equations do not permit us totevdown the fields in
moving coordinates proceeding from the known figltsasured in the sta-
tionary coordinates. Generally, this can be domeuth the Lorentz trans-
formations but they so not follow from classicat@todynamics. In a ho-
mopolar generator, the electric fields are measurdde stationary coordi-
nates but they are actually excited in the elemeafiich move relative to
the stationary coordinate system. Therefore, tiveciple of the homopolar
generator operation can be described correctly ionilge framework of the
special theory of relativity (STR). This brings tie question: Can classical
electrodynamics furnish correct results for théden a moving coordinate
system, or at least offer an acceptable approxamatif so, what form will
the equations of electromagnetic induction have?

The Lorentz force is

Er=eE+ d WH.

It bears the name of Lorentz it follows frans transformations which
permit writing the fields in the moving coordinatéghe fields in the sta-
tionary coordinates are known. Henceforward, te&l§ and forces generat-
ed in a moving coordinate system will be indicatetth primed symbols.

The clues of how to write the fields in mayinoordinates if they are
known in the stationary system are available enehe Faraday law. Let us
specify the form of the Faraday law:

do,
dt

The specified law, or, more precisely, ite@ped form, means thalE

and dI' should be primed if the contour integral is soughtin moving co-
ordinates and unprimed for stationary coordinatesthe latter case the

$E" dl'=— (1.1)



right-hand side of Eq. (1.1) should contain a paderivative with respect
to time which fact is generally not mentioned tedature.

The total derivative with respect to timeHqg. (1.1) implies that the fi-
nal result for the contour e.m.f. is independenthef variation mode of the
flux. In other words, the flux can change eithergbyiwith time variations

of B or because the system, in whi¢B'd I' is measured, is moving in the
spatially varying fieldB. In Eqg. (1.1)

¢, =[BdS (1.2)
where the magnetic inductiof =# H is measured in the stationary coordi-

nates and the elemedtS in the moving coordinates.
Taking into account Eg. (1.2), we can finonfrEq. (1.2)

jEdT=—"[BdS
Since izi+\7 grad | we can write
dt dt :
Ed I'= B d S &V d- VdivBd?*
$ —_Jﬂ S‘J[ J - v < (1.3)

In this case contour integral is taken over thetmand I', covering the
spaced S. Henceforward, we assume the validity of the @alil transfor-

mations, i.e.d '=d I and d S=d & Eq. (1.3) furnishes the well-known re-
sult:

E'=E + [VxB|, (1.4)
which suggests that the motion in the magnetid fetcites an additional
electric field described by the final term in E#.4). Note that Eq. (1.4) is
obtained from the slightly specified Faraday lavd anot from the Lorentz
transformations.

According to Eq. (1.4), a charge moving ie thagnetic field is influ-
enced by a force perpendicular to the directiothefmotion. However, the
physical nature of this force has never been censdd This brings confu-
sion into the explanation of the homopolar generaperation and does not
permit us to explain the electric fields outsideirdimitely long solenoid on
the basis of the Maxwell equations.

To clear up the physical origin of the finatm in Eq. (1.4), let us write

B and E in terms of the magnetic vector potentég!

B = rotA, E:—d(;t%.

Then, Eq. (1.4) can be re-written as
__ OA o -
E = S +[V><rot,ﬂ ,
and further:
E = —028 (Vo) A + grad( Va) . (1.5)

The first two terms in the right-hand side of Eh.5) can be considered as
the total derivative of the vector potential widspect to time:



E' :—dgf+ grad(VA) . (1.6)
As seen in Eg. (1.5), the field strength, and heheeforce acting upon a
charge consists of three components.

The first component describes the pure timeations of the magnetic
vector potential. The second term in the right-hami@ of Eq. (1.5) is evi-
dently connected with the changes in the vectoemg@l caused by the mo-
tion of a charge in the spatially varying fieldtbfs potential. The origin of
the last term in the right-hand side of Eq. (1byuite different. It is con-
nected with the potential forces because the pateabergy of a charge

moving in the potential fieldd, at the velocityV is equal toe(\7A). The

magnitudeegrad(V/%) describes the force just as the scalar potentzlig

ent does.

Using Eqg. (1.5), we can explain physicallythe strength components
of the electronic field excited in the moving andt®nary cooperates. If our
concern is with the electric fields outside a ls@enoid, where the no
magnetic field, the first term in the right-handesiof Eq. (1.5) come into
play. In the case of a homopolar generator, theefacting upon a charge is
determined by the last two terms in the right-har® of Eq.(1.5), both of
them contributing equally.

It is therefore incorrect to look upon thenfapolar generator as the ex-
ception to the flow rule because, as we saw alibigerule allows for all the
three components. Using the rotor in both sides (E®) and taking into
accountrot grad= 0, we obtain

. B
rotE =g 1.7)

If motion is absent, Eq. (1.7) turns into Maxwetjuation (1.2). Equation
(1.11) is certainly less informative than Eq. §1.becauserot grad= 0, it

does not include the forces defined in termrad(\?%). It is therefore

more reasonable to use Eq. (1.1) if we want tonaflar all components of
the electric fields acting upon a charge both engtationary and in the mov-
ing coordinates.

As a preliminary conclusion, we may state the Faraday Law, EQ.
(1.1), when examined closely, explains clearlyfeditures of the homopolar
generator operation, and this operation princigleaiconsequence, rather
than an exception, of the flow rule, Eq. (1.1). m@gn’s statement that

N ~ JB
[VxB] for the “moving contour” andi*E =~ for the “varying field”

are absolutely different laws is contrary to falthte Faraday law is just the
sole unified fundamental principle which Feynmawldeed to be missing.
Let us clear up another Feynman'’s interpretati@raéfay’s observation in
fact led him to discovery of a new law relatingadtee and magnetic fields
in the region where the magnetic field varies wiithe and thus generates
the electric field. This correlation is essentidliye but not complete. As
shown above, the electric field can also be exaitedre there is no magnet-
ic field, namely, outside an infinitely long soledoA more complete for-
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mulation follows from Eq. (1.5) and the relationsHe = -TA: is more

_ JB
general thanrot E =-—=-.

This suggests that a moving or stationarygdanteracts with the field
of the magnetic vector potential rather than whk tagnetic field. The
knowledge of this potential and its evolution carygermit us to calculate
all the force components acting upon charges. Tagnetic field is merely
a spatial derivative of the vector field.

As follows from the above considerationsitmore appropriate to write
the Lotentz force in terms of the magnetic vectateptial

F =eE+ ¢ Vx roth] = eE- (VD) A +egrad VA)

which visualizes the complete structure of thedorc

The Faraday law, Eq. (1.1) is referred tdheslaw of electromagnetic
induction because it shows how varying magnetici§ican generate elec-
tric fields. However, classical electrodynamics teams no law of magne-
toelectric induction showing how magnetic fields ¢z excited by varying
electric fields. This aspect of classical electraiyics evolved along a dif-
ferent pathway. First, the law

§H di=I (1.8)
was known, in whichl was the current crossing the area of the integrati
contour. In the differential from Eqg. (1.8) becomes

rotH = | (1.9)

where ], is the conduction current density.
Maxwell supplemented Eq. (1.9) with displaestcurrent
. . dD
rotH =j_+—-
Js -
However, if Faraday had performed measuremenaiiying electric in-
duction fluxes, he

would have inferred the following law [5-9]

AT dq)
$HdI = . (1.10)
where®, =[D d S is the electric induction flux. Then
T 0D e R AT e (Y T A
<ﬁHd|=Jﬁd S+ ¢[DxMdI+ [Vdv Dd & (1.11)

Unlike divB=0 in magnetic fields, electric fields are charactedi by

divD=p and the last term in the right-hand side Eq.1(ldescribes the

conduction current, i.e. the Ampere law follows from Eq. (1.10). Eq.
(1.11) gives

H = [DxV], (1.12)
which was earlier obtainable only from the Loremémsformation.
Moreover, as was shown convincingly in [24,. EL.12) also leads out of

the Biot-Savart law if magnetic fields are calcathfrom the electric fields
excited by moving charges. In this case the last e the right-hand side



Eq. (1.11) can be omitted and the induction lawsobee completely sym-
metrical.

§EdT = —j”;,'t?’d S- BV dl

~ D - 1.13
gfpﬁ'dl':de S+ §[DxVdl (1.13)
ot
E=E+[VxH,
o (1.14)
H' =H-[VxD] .

Earlier, Eqgs. (1.14) were only obtainable from towariant Lorentz trans-
formations, i.e. in the framework of special theofyelativity (STR). Thus,

\Y . . .
the STR results accurate to thegdcerms can be derived from the induction
laws through the Galilean transformations. The 3&sults accurate to the
VZ
2 terms can be obtained through transformation of(Ef3). At first,

however, we shall introduce another vector poténtigich is not used in
classical electrodynamics. Let us assume for vdiédas [5] that

D =rotA, |
where A, is the electric vector potential. It then follofwsm Eq. (1.13) that

S ) -
A'= " V1A, - grad V)

or
-, _OA
H - W _[V X I‘Otpb] ,
or
o, _dA .
H' = o grad[VA]

These equations present the law of magnetoelanttigction [5] written in
terms of the electric vector potential.

To illustrate the importance of the introdactof the electric vector po-
tential, we come back to an infinitely long solehorlhe situation is much

the same, and the only change is that the vedtoese replaced with the

vectorsD. Such situation is quite realistic: it occurs whiee space between
the flat capacitor plates is filled with high eléctinductivities. In this case
the displacement flux is almost entirely inside diedectric. The attempt to
calculate the magnetic field outside the space meduby the dielectric

(where DD) runs into the same problem that existed for tileutation be-

yond the fieldsE of an infinitely long solenoid. The introductiorf the
electric vector potential permits a correct solutiof this problem. This
however brings up the question of priority: whapisnary and what is sec-
ondary? The electric vector potential is no doufiinpry because electric
vortex fields are excited only where the rotor wéls potential is non-zero.
As follows from Eqgs. (1.14), if the referensgstems move relative to

each other, the field§ and H are mutually connected, i.e. the movement



in the fieldsH induces the field€ and vice versa. But new consequences
appear, which were not considered in classicatreldgnamics. For illustra-
tion, let us analyze two parallel conducting platéth the electric fieldE in
between. In this case the surface chaxgper unit area of each plateds.

If the other reference system is made to move lgartal the plates in the
field E at the velocitydV, this motion will generate an additional fiedid/ =
AVEE. If a third reference system starts to move atvitlecity 4V, within
the above moving system, this motion in the fidid will generatedr =
1eMNPE, which is another contribution to the fielid The field E' thus be-
comes stronger in the moving system than it ishi dtationary one. It is
reasonable to suppose that the surface charge atdtes of the initial sys-

tem has increased hye’aV’E as well.
This technique of field calculation was désed in [5-9]. If we putF
and H, for the field components parallel to the velodityection andE;

and Hy for the perpendicular components, the final fiedishe velocityv
can be written as

T}
I
m

_ =V Zoeow Y
'= E.ch- + 22[W H] sh,

Ecch + [V H] s
H|'| - |:||| , (1.15)
I R,
HD_ HDChE - K/[V>< %] She,

1
where Z, =\/E is the space impedand?—ﬁ/ﬁ Is the velocity of light in the

medium under consideration.
The results of these transformations coineidbh the STR data with the

2
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accuracy to the = terms. The higher-order corrections do not coiacld
should be noted that until now experimental testthe special theory of

2

. V
relativity have not gone beyond thec—2~ accuracy.

As an example, let us analyze how Egs. (1chB)account for the phe-
nomenon of phase aberration which was inexplicabtdassical electrody-
namics.

Assume that there are plane wave compondpt@nd Ex, and the
primed system is moving along tkeaxis at the velocity¥/x. The field com-
ponents with in the primed coordinates can be emits

c (1.16)



The total field £ in the moving system is

' 1\ 2 }/2 V.
c-[[o (S]] st
Hence, the Poynting vector no longer follows thedion of they-axis. It is
in the xy-plane and tilted about theaxis at an angle determined by Egs.
(1.16). The ratio between the absolute values ®fvééctorsE andH is the
same in both the systems. This is just what is knaw phase aberration in
classical electrodynamics.

2
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2. Magnetic field problem

As follows from the transformations in Eq.1®) if two charges move

at the relative velocityv , their interaction is determined not only by the
absolute values of the charges but by the relatison velocity as well.
The new value of the interaction force is founda8]

V.
ch2
AE, Ty
where 1, is the vector connecting the charg¥s,is the component of the

F= , (2.1)

velocity V , normal to the vector,.

If opposite-sign charges are engaged in ¢lagive motion, their attrac-
tion increases. If the charges have the same digeis,repulsion enhances.
ForV =0, Eg. (2.1) becomes the Coulomb law .

Using Eq. (2.1), a mew value of the potenfi@) can be introduced at
the point, where the chargg is located, assuming thgs is immobile and
only g; executes the relative motion

gld‘ﬁ
Aqr)=—— | 2.2)

iy AL

We can denote this potential as “scalar-vectortabee its value is depend-
ent not only on the charge involved but on the @aund the direction of its
velocity as well. The potential energy of the cleairgeraction is

Vo
_agchy

w=—_-6¢
e (2.3)

Egs. (2.1), (2.2) and (2.3) apparently accountlerchange in the value of
the moving charges.

Using these equations, it is possible toutate the force of the conduc-
tor-current interactions and allow, through supseifpan, for the interaction
forces of all moving and immobile charges in thaedctors. We thus ob-
tain all currently existing laws of electromagnetic

Let us examine the force, interaction of tagpaced conducto&ig. 1)
assuming that the electron velocities in the cotatgcareV, andV,. The
moving charge values per unit length of the conahscareg; andg..



In terms of the present-day theory of elentignetism, the forces of the
interaction of the conductors can be found by twathads.

One of the conductors (e.g., the lower orex)egates the magnetic field
H(r) in the location of the first conductor. This fietd

H(r):ﬂ

2mr

The field E is excited in the coordinate system moving togethi¢h the
charges of the upper conductor:

E' =[VxB]=\u, H(1 . (2.4)

l.e. the charges moving in the upper conductor eepee the Lorentz force.
This force per unit length of the conductor is

F- MGG _ L,
2irr JECT - (2.5)

& — 1,

4,

——

g — 1,

Fig. 1. Schematic view of force interaction betwearrent-carreging con-
ductors of a two-conductor line in terms of thesgrg-day model.

Eq. (2.6) can be obtained in a different way. Assuhat the lower conduc-
tor excites a vector potential in the region of thmper conductor. Th& —
component of the vector potential is
_ _gMinr _ Linr
A= 2EC  UEC
The potential energy per unit length of the uppmrduictor carrying the cur-
rentl, in the field of the vector potentia; is
L1, Inr
W= A=-22
ZAQ 27'EOC2 .
Since the force is the derivative of the potengiaérgy with respect to the
opposite-sign coordinate, it is written as
_ ow L,
P © 27ELCH (2.6)
Both the approaches show that the interadtioee of two conductors is
the result of the interaction of moving chargesnswf them excite fields,
the others interact with them. The immobile changgsesenting the lattice
do not participate in the interaction in this scleerBut the forces of the




magnetic interaction between the conductors attojughe lattice. Classical
electrodynamics does mot explain how the movingrgds experiencing
this force can transfer it to the lattice.

The above models of iteration are in unsdlvaonflict, and experts in
classical electrodynamics prefer to pass it ovesiience. The conflict is
connected with estimation of the interaction foofegwo parallel-moving
charges. Within the above models such two charigesld be attracted. In-
deed, the inductioB caused by the moving charggeat the distanceis

oV
B=—
2IECT

If another chargeg, moves at the same veloci¥yin the same direction at
the distance from the first charge, the inductighat the locatiorg, pro-
duces the force attractirgg andg,.

Fo 9%V
AEST

An immovable observer would expect these chargegperience attraction
along with the Coulomb repulsion. For an observewvimg together with
the charges there is only the Coulomb repulsion ramattraction. Neither
classical electrodynamics not the special theoryetdtivity can solve the
problem.

Physically, the introduction of magnetic diglreflects certain experi-
mental facts, but so far we can hardly understahdrg/these fields come
from.

In 1976 it was reported in a serious expentalestudy that a charge ap-
peared on a short-circuited superconducting satewbien the current in it
was attenuating. The results of [10] suggest thatvialue of the charge is
dependent on its velocity, which is first of all aontradiction with the
charge conservation law. It is useful to analyzee ke interaction of cur-
rent-carrying systems in terms Egs. (2.1), (2.2) @3) .

We come back again to the interaction of thim conductors with
charges moving at the velocitigg andV, (Fig. 2).

Fig. 2. Schematic view of force interaction betwearrent-carrying wires
of a two-conductor line. The lattice is chargedijposly.



0., @ andg:’, @ are the immobile and moving charges, respectiyely,
unit length of the conductorg,” andg," refer to the positively charged lat-
tice in the lower and upper conductors, respectii@efore the charges start
moving, both the conductors are assumed to bealaléctrically, i.e. they
contain the same number of positive and negatiaeges.

Each conductor has two systems of unlikeggmwith the specific den-
sitiesg,”, g~ andg,’, ¢ . The charges neutralize each other electricaly.
make the analysis of the interaction forces momvenient, in Fig. 2 the
systems are separated along #texis. The negative-sign subsystems (elec-
trons) have velocitie¥; andV,. The force of the interaction between the
lower and upper conductors can be considered amagfour forces speci-
fied in Fig. 2 (the direction is shown by arrow$he attraction force&s
andF, are positive, and the repulsion forégsandF, are negative.

According to Eq. (2.1), the forces betweenitidividual charge subsys-
tems (Fig. 2) are

__90

17 omy
LG VY,
27N c

I g g Cl”M 2.7)
S omy ¢

9% v

Fa= 277£r hc

By adding up the four forces and remembering thatgdroduct of unlike
charges and the product of like charges corresporle attraction and re-
pulsion forces, respectively, we obtain the topacsfic force per unit length
of the conductor

99 N
F = 27Ey (c% + CI’FC CPC 1) (2.8)
whereg; andg, are the absolute values of charges. The signiseofarces
appear in the bracketed expression. Assuriviig c, we use only the two

2

1
first terms in the expressm’n— ie. ch m+ . Eq. (2.8) gives

c o oMeV _ L

L ECT  2ECT

whereg; andg, are the absolute values of specific charges\and/, are
taken with their signs.

It is seen that Egs. (2.5), (2.6) and (2.8) caladhough they were
obtained by different methods.

According to Feynman (see the introductidhg e.m.f. of the circuit
can be interpreted using two absolutely differeawd. The paradox has
however been clarified. The force of the enteractietween the current-
carrying systems can be obtained even by threelubbodifferent meth-
ods. But in the third method, the motion “magnéiedtd” is no longer nec-



essary and the lattice can directly participattheaformation of the interac-
tion forces. This was impossible with the previtwe techniques.

In practice the third method however run® iatserious obstacle. As-
suming g," = 0 andV, = 0, i.e. the interaction, for example, betweea th
lower current-carrying system and the immobilergba,™ the interaction
force is

This means that the current in the conductor isetexttrically neutral, and
the electric field

_ gV
07 amEcr’

(2.9)

Is excited around the conductor, which is equivialeran extra specific stat-
ic charge on the conductor
__ v
9="6 2. (2.10)

Before [10], there was no evidence for generatibelectric fields by d.c.
currents.

When Faraday and Maxwell formulated the bksis of electrodynam-
ics, it was impossible to confirm Eq. (2.10) expentally because the cur-
rent densities in ordinary conductors are too siteatletect the effect. The
assumption that the charge is independent of itscitg and the subsequent
introduction of a magnetic field were merely volamtic acts.

In superconductors the current densities iarmto find the correction
2

V,
for the charge~ gc% experimentally. Initially, was taken as evidenoe f

the dependence of the value of the charge on ity The author of this
study has also investigated this problem, but,ken|B-10], in his experi-
ments current was introduced into a superconduatoigby an inductive
non-contact method. Even in this case a chargeaapgeon the coil. The
experimental objects were superconducting compdiite Ti wires coated
with copper, and it is not cleat what mechanismegponsible for the charge
on the colil. It may be brought by mechanical defatiton which causes a
displacement of the Fermi level in the copper. Expents on non-coated
superconducting wires may be more informative. Anwhthe subject has
not been exhausted and further experimental firedarg of paramount im-
portance to fundamental physics. Using this model,should remember
that there is no reliable experimental data oncstéctric fields around the
conductor. According to Eqg. (2.9), such fields exeited because the value
of the charge is dependent on its velocity. Iselary physical mechanism
which could maintain the interacting current-cangyisystems electrically
neutral within this model? Such mechanism doesteXp explain it, let us
consider the current-carrying circuit in Fig. 3.i9s a superconducting thin
film whose thickness is smaller than the field geateon depth in the super-
conductor. The current is therefore distributedfarmly over the film
thickness. Assume that the bridge connecting thde wiarts of the film is



much narrower than the rest of the current-carryilmg. If persistent cur-
rent is excited in such a circuit, the current dignand hence the current
carrier velocityV; in the bridge will much exceed the velocMy in the
wide parts of the film.

Such situation is possible if the currentrieas are accelerated in the
partd; and slowed down in the pad,. But acceleration and slowing-down
of charges is possible only in electric fieldsVif> V,, the potential differ-
ence between the partk and d, which causes acceleration or slowing-
down is determined as

_my’

U=— - (2.11)

This potential difference can appear only due todharge density gradient
in the partsd; andd,, i.e. the density of charge carriers decreasds agt
celeration and increases with slowing down. Thati@h no > n; should be
fulfilled, whereny andn; are the current-carrier densities in the wide and
narrow bridge parts of the film,

< d1 > < d2=
Vi
—>
Ve
<%

Fig. 3. Schematic view of a current-carryimguit based on a supercon-
ducting film.

respectively. It is clear that some energy is ndeibeaccelerate charges
which have masses. Let us find out where this gnesges from.

On acceleration the electrostatic energy labla in the electrostatic
field of the current carriers converts into kinegicergy. The difference in
electrostatic energy between two identical voluimeang different electron
densities can be written as

o
AW = AnSI'EOr ’ (2.12)
wheresn = ng — ny, e is the electron chargejs the electron radius.
Since
&€ _ ol
8TE,r '

wheremis the electron mass, Eq. (2.12) can be rewrdten

2
AW =anme,



This energy is used to accelerate the currentezarri

Hence,
m
AW=n° i
2 )
and
1 V2
n=n -0
N=h5-z.

The electron density in a moving flow is
s34

We see that the change in the current-catieesity is quite small, but
this change is just responsible for the existerfcéne® longitudinal electric
field accelerating or slowing down the chargeshia partsd; andd,. Let us
call such fields “configuration fields” as they azennected with a certain
configuration of the conductor. These fields arailable in normal conduc-
tors too, but they are much smaller than the fieddated to the Ohmic re-
sistance.

We can expect that a voltmeter connectetigéaircuit, like is shown in
Fig. 3, would be capable of registering the configjon potential difference
in accordance with Eq. (2.11). If we used an ongirigiuid and a manome-
ter instead of a voltameter, according to the Belthequation, the manom-
eter could register the pressure difference. €ad ffilms, the configuration
potential difference is ~10B, though it is not observablt experimentally.
We can explain this before hand. As the velocitéshe current carriers
increase and their densities decrease, the eleittis njrmal to their
motion enhance. These two precesses counterbakexde other. As a
result, the normal component of the electric fieéd a zero balue in all parts
of the film. In terms of the considered, this lodke

__99%
Looomy
el 2 2 —
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27E N 2c¢C 2¢ c
_ 9,9, 1y Vi
Fs = 271E 1 (1 2%]“] c’ (2.13)
Fo=0% () 1|\
4 2mE,r 2 ¢ c -

The bracketed expressions in Egs. (2.13) allow tler motion-related
change in the density of the charggsandg, .
V2
After expandingch , multiplying out and allowing only for thég
terms, Egs. (2.13) give
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By adding ugF1, F,, F3 andF,, we obtain the total force of the interaction

A A T
0 uECr  2ECT’

Again, we have a relation coinciding with Eqs.5§2and (2.6). However, in
this case the current-carrying conductors are aketectrically. Indeed, if
we analyze the force interaction. For example, betwthe lower conductor
and the upper immobile charge (puttingg,”=0 andV,=0), the total inter-
action force will be zero, i.e. the conductor wilbwing current is electri-
cally neutral.

If we consider the interaction of two parbaHemoving electron flows
(takingg:'=g>"=0 andV,=V,) , according to Eq. (2.7), the total force is

'

z 27E -

It is seen that two electron flows movingleg same velocity in the ab-
sence of a lattice experience only the Coulomb Iségu and no attraction
included into the magnetic field concept.

Physically, in this model the force interaatiof the current-carrying
systems is not connected with any now field. Theraction is due to the
enhancement of the electric fields normal to threafion of the charge mo-
tion.

The phenomenological concept of the magniid of correct only
when the charges of the current carriers are cosgted with the charges of
the immobile lattice, the current carriers excitenagnetic field. The mag-
netic field concept is not correct for freely mayioharges when there are
no compensating charges of the lattice. In thi® @moving charged parti-
cle or a flow of charged particles does not exaiteagnetic field. Thus, the
concept of the phenomenological magnetic fieldrie tbut for the above
case.

It is easy to show that using the scalarafegbtential, we can obtain all
the presently existing laws of magnetism. Besidles,approach proposed
permits a solution of the problem of the interactlmetween two parallel-
moving charges which could not be solved in terfhthe magnetic field
concept.



3. Problem of electromagnetic radiation

Whatever occurs in electrodynamic, it is aaeted with the interaction
of moving and immobile charges. The introductiorthed scalar-vector po-
tential answers this question. The potential isedasn the laws of electro-
magnetic and magnetoelectric induction. The Maxwgliations describing
the wave processes in material media also follomfthese laws. The
Maxwell equations suggest that the velocity ofdfi@iropagation is finite
and equal to the velocity of light.

The problem of electromagnetic radiation bansolved of the elemen-
tary level using the scalar-vector potential arel fihiteness of propagation
of electric processes.

For this purpose, the retarded scalar-vagmtential [5-9]

glcm

Art) = e (3.1)

is introduced, wheré/; is the velocity of the chargg, at the moment

I

i T . .
t:t_E’ normal to the vector’, r' is the distance between the chagge

and point 2 (Fig. 4), where the field is soughtdbthe moment . The field
at point 2 can be found from the relatié¥—grad ¢. Assume that at the

1

r . .. . . .
momentt—z the charge; is at the origin of the coordinates and its veloci

ty is V(1) . The fieldE, at point 2 is

__ M2 __ & 0 WO

Y gy ATE)N Oy c

(3.2)

Differentiation is performed assuming to be a constant magnitude. From
Eq. (3.2) we obtain

__ % D(t) VIZI(t) __ 8 EKt)
By = 4720ch c mcHD\ﬁ(t)Ew (3.3)

Using only the first term of the expansion M we can obtain from

Eq. (3.3)

o avy(t—éj eay( t—éj
Ey(x, t)=- = . (3.4)
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Fig. 4. Formation of the retarded scalar-vectueptial.

. . X\ . . . .
In this equation ofay(t—cj is the being late acceleration of charge. This

equation is wave equation and defines both the itudpl and phase respons-
es of the wave of the electric field, radiated oy inoving charge.

If we as the direction of emission take the vectdrich composes with the
axis of y the angle ofa , then Eg. (3.4) will be written down:

X)) .
eay( t—stma

ATE,C* X (3.5)

Ey(x,t,a) =

Eg. (3.5) determines the radiation pattern. Sithege is a axial symmetry
relative to the axisy, it is possible to calculate the complete radrapattern

of the emitter examined. This diagram correspondsé radiation pattern of
dipole emission.
Consequently

A (t_c 47X
there is the being late vector potential, the E35) can be rewritten

XY . X X
eay(t—CJsma 1 aAH( t—Cj - aAp,( t—CJ
aESK | & ot Hoa

Ey(x, t,a)=-

is again obtained complete agreement with the emsabf the being late

vector potential, but vector potential is introdddeere not by phenomenolog-
ical method, but with the use of a concept of tmdp late scalar- vector po-
tential. Let us note one important circumstancethea Maxwell equation

electric fields it appears vortex. In this case d¢hectric fields bear gradient
nature.



Let us demonstrate the still one possibility, ihigves Eg. (3.5). It is known
that in the electrodynamics there is this concapthe electric dipole and di-
pole emission. Two charges with the opposite sigive the dipole moment:

p=ed, (3.6)

Therefore current can be expressed through thealme of dipole moment
on the time of

. od _ op
&V = ez = 5i-
Consequently
__1dp
“eot’
and
v 10°p
a T et

Substituting this equation into Eg. (3.4), we abtthe law of the dipole
emission

47 £,C° ot’
This is also known equation [1].

In the process of fluctuating the electripale are created the electric
fields of two forms. In addition to this, aroundetleing varied dipole are
formed the electric fields of static dipole, whichange in the time in connec-
tion with the fact that the distance between thargés it depends on time.
Energy of these pour on and it is expended on thisston. However, the
summary value of field around this dipole at anynmeat of time defines as
superposition pour on static dipole pour on emissio

Laws (3.4), (3.5), (3.7) are the laws of theact action, in which already
there is neither magnetic pour on nor vector paaémtl.e. those structures,
by which there were the magnetic field and magneatictor potential, are al-
ready taken and they no longer were necessary. to us

Using Eg. (3.5) it is possible to obtain the's of reflection and scattering
both for the single charges and, for any quantitthem. In this case each
moving charge emits the electric fields, determibgdeg. (3.5). The super-
position of electrical pour on all charges in th&taht zone and it is electrical
wave.

If on the charge acts the electric fieE{/ = E(')ysinwt, then its accelera-

r
o*p(t = )
S ! c. (3.7)

tion takes the form of

Consequently

e’ sina . X
C

, _K : X
Ey(x, t,a):mﬁ)y )—7 E;ysma)(t—E), (3.8)



. e’sina .
the coefficient K =——— can be named the coefficient of the re-
47E,L'M
emission of single charge in the assigned direction

The current wave of the displacement accompanewéve of electric field:

2| =X
: _ OBy  esina 0 Vy(t cj
Jy(Xat) - 50 at - 47TCZX atz

If charge accomplishes its motion under the actdénthe electric field
E' = E, sinwt, then bias current in the distant zone will betten down as

2
_ __ fw X
jy(X,t) = 4ﬂC2mXE0ycosa)(t c)' (3.9)

The sum wave, which presents the propagation cfradal pour on Eg. (3.8)
and bias currents Eg. (3.9) can be named electerduvave.
It is possible to introduce also magnetic wavesyasng that

- oE -
j=¢ 5 =rotH, (3.10)

divH=0

introduced thus magnetic field is vortex. Compaiigy (3.9) and Eg. (3.10)
we obtain:

H,(xt)  Ew sina e (X
X = am2mx Eoy €08 t=C .

Integrating this relationship on the coordinate, fime the value of the mag-
netic field

»
() = g = sina)(t—)c(j. (3.11)

Thus, Egs. (3.8), (3.9) and (3.11) can beeththe laws of electrical in-
duction, since. they give the direct coupling betwehe electric fields, ap-
plied to the charge, and by fields and by curramdsiced by this charge in its
environment. Here charge plays the role of thasfiamer, which ensures
this reemission. The magnetic field, which can akwdated with the aid of
Eg. (3.11), is directed normally both toward thectic field and toward the
direction of propagation, and their relation atfepoint of the space is equal

of
H,(x,t) &,C & '



In this equation oZ is wave drag of free space.

Wave drag determines the active power ofeess the single area, locat-
ed normal to the direction of propagation of theve&va

1
P=52E,,.

Therefore electrocurrent wave, crossing this atemmsfers through it the
power, determined by the data by relationship. Thi®cated in accordance
with by the Poynting theorem about the power flfibelectromagnetic wave.
Therefore, for finding all parameters, which chéeaze wave process, it is
sufficient examination only of electrocurrent wasad knowledge of the
wave drag of space. In this case it is in no waynmalsory to introduce this
concept as “magnetic field” and its vector potdntéthough there is nothing
illegal in this. The fields, obtained thus, satigf¢lmholtz's theorem. This

theorem says, that any single-valued and continvestor field F, which
turns into zero at infinity, can be representedjualy as the sum of the gra-

dient of a certain scalar functiop and rotor of a certain vector functiof
, whose divergence is equal to zero:

F=gradg+rotC,

divC=0.

Consequently, must exist clear separation pouroothe gradient and the
vortex. It is evident that in the expressions, oigd for those induced pour
on, this separation is located. Electric fieldsrbgradient nature, and mag-
netic - vortex.

Thus, the construction of electrodynamicsusththave been begun from
the acknowledgement of the dependence of scalanpak on the speed.
But nature very deeply hides its secrets, and demoto come to this simple
conclusion, it was necessary to pass way by leafftiost into two centu-
ries. The grit, which so harmoniously were ereasxlind the magnet poles,
in a straight manner indicated the presence of qumaer pour on potential
nature, but to this they did not turn attentionefgfore it turned out that all
examined only tip of the iceberg, whose substapiat remained invisible
of almost two hundred years.

Taking into account entire aforesaid one sthagsume that at the basis
of the overwhelming majority of static and dynamlenomena at the elec-
trodynamics only Eg. (3.1), which assumes the dégece of the scalar po-
tential of charge on the speed, lies. From thisnfda it follows and static
interaction of charges, and laws of power intetactn the case of their mu-
tual motion, and emission laws and scattering. &@pisroach made it possi-
ble to explain from the positions of classical &ledynamics such phenom-
ena as phase aberration and the transverse thddd@ffect, which within
the framework the classical electrodynamics of awxation did not find.

Let us point out that one of the fundameweliations of induction Eg.
(3.4) could be obtained directly from the Ampere latill long before ap-
peared the Maksvell equation. The Ampere law, esq@e in the vector form,
determines magnetic field
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In this equationl - current, which flows through the element
dl', I - vector, directed frondl to the point ofx, y, z.

It is possible to show that
( jxdl—ro{dI ]— rotdl .
rjr

[dIr]
But the rotor ofdl is equal to zero therefore

H =rot| | [f};jzrotﬂH .

Consequently

~(dl

A=l '[m} - (3.12)
The remarkable property of this expression is that the vector potential

depends from the distance to the observation pmn]r-t Specifically, this

property makes it possible to obtain emission laws.
Since ofl =gv, where g the quantity of charges, which falls per unit

of the length of conductor, from (3 12) we obtain:
gvdl

For the single charge @& this equatlon takes the form:

~ _ev
A= 4
In connection with the fact that electric fielddstermined from the equation

1

oA,
“H
for this case obtain
- g}’dT
E:_,U.[ A7
In this equatiorma is acceleration of charge.

jgad' . (3.13)

This equation appears as follows for thelsicharge:
E= A (3.14)

In Eg. (3.13) and Eg. (3.14) it is necessarydonswder that the potentials are
extended with the final speed they be late to taeop % Taking into ac-

count the fact that for the vacuup——- 1 , these equations take the form the
£,C°

form:
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(3.16)

Eg. (3.15) and Eg. (3.16) represent waygagons and are the solu-
tions. Of the Maksvell equation, but in this cakeyt are obtained directly
from the Ampere law. To there remains only preskatquestion, why elec-
trodynamics in its time is not banal by this method

4. |sthere any dispersion of electric inductivitiesin material media?

It is noted in the introduction that dispersiof electric and magnetic
inductivities of material media is a commonly gueel idea [11]. The idea
Is however not correct.

To explain this statement and to gain a betelerstanding of the phys-
ical essence of the problem, we start with a singpl@mple showing how
electric lumped-parameter circuits can be descriBesdwe can see below,
this example is directly concerned with the probleihour interest and will
give us a better insight into the physical pictafethe electrodynamic pro-
cesses in material media.

In a parallel resonance circuit includingapacitorC and an inductance
coil L, the applied voltage) and the total current through the circuit are
related as

du 1
=l + 1 =C + I—_IU dt
du . 1 :
where I, = C o s the current through the capaC|tcb[,=EIU dt is the
current through the inductance coil. For the hanmealtageU = Ug sin at
1
I :(a)C - ijUO cosat (4.1)

The term in brackets is the total susceptamcef the circuit, which consists
of the capacitiver, and inductiveg. components
1
UX_O-C+UL_CUC_H . (42)
EqQ. (4.1) can be re-written as

I :a)C(l - gjuo cost

1. o
where aS—E is the resonance frequency of a parallel circuit.

From the mathematical (i.e. other than phatsistandpoint, we may as-
sume a circuit that has only a capacitor and nadtahce coil. Its frequency
— dependent capacitance is



ca=di- 9]

Another approach is possible, which is correct too.
EqQ. (4.1) can be re-written as
(c«f_
2]
IZ = _TUO cosad .
In this case the circuit is assumed to include @mynductance coil and no
capacitor. Its frequency — dependent inductance is

L
@)= —
(@) (a; j . 4.3)
“
2
Using the notion Egs. (4.2) and (4.3), we can write
I, = a)CD(a)UO cosd (4.4)
or
I =- 1 U
) o COSd (4.5)

Egs (4.4) and (4.5) are equivalent and each of themides a complete
mathematical description of the circuit. From theygical point of view,

C{w and LE@ do not represent capacitance and inductance ththegh
have the corresponding dimensions. Their physeade is as follows:

Y = %
e = 2

i.e. C{a) is the total susceptance of this circuit dividgdlequency:
0 1
L(o) =

wao,

and L« is the inverse value of the product of the totaceptance and the
frequency.
AmountC(w) is constricted mathematically so that it inclu@andL

simultaneously. The same is true 0t .

We shall not consider here any other casgs, series or more complex
circuits. It is however important to note that afipd the above method, any
circuit consisting of the reactive compone@t@andL can be described ei-
ther through frequency — dependent inductance emquincy — dependent
capacitance.

But this is only a mathematical descriptidraal circuits with constant
— value reactive elements.

It is well known that the energy stored ie ttapacitor and inductance
coil can be found as

: (4.6)

L1, (4.7)



But what can be done if we haCe(@) and L{«)? There is no way of
substituting them into Eqs. (4.6) and (4.7) becdheg can be both positive
and negative. It can be shown readily that the ggnetored in the circuit
analyzed is

_ 1 dUX 2
W=5CE, Y. (4.8)

or

(4.9)
or

1
d
1 (wLﬂ(@Jz
W=s0——o Y (4.10)

d

Having written Eqgs. (4.8), (4.9) or (4.10) in geyatletail, we arrive at the
same result:
W = Tcl? + L2
2 2
whereU is the voltage at the capacitor angs the current through the in-
ductance coil. Below we consider the physical megnog the magnitudes
&) and( ) for material media.
A superconductor is a perfect plasma medinrwhich charge carriers
(electrons) can move without friction. In this calse equation of motion is
av_ -
ma=eE, (4.11)
wherem ande are the electron mass and charge, respectigelg;the elec-
tric field strengthV is the velocity. Taking into account the curreansity

-

j=neV, (4.12)
we can obtain from Eq. (4.11)

- _n€ -

i, _FIE dt (4.13)

In Egs. (4.12) and (4.33) is the specific charge density. Introducing the
notion

m
i (4.14)
we can write
- 1 ..
i =—[E dt
j ka . (4.15)

HereLy is the kinetic inductivity of the medium. Its etaace is based on the
fact that a charge carrier has a mass and hepossesses inertia properties.

For harmonic fields we have=E sinat and Eq. (4.15) becomes

- 1
=00 E, cosat (4.16)
Egs. (4.15) and (4.16) show that is the current through the inductance
colil.

In this case the Maxwell equations take til®wing form



: JE 1 - (4.17)
szoﬁ'i'q_[E dt,

where g and 1y are the electric and magnetic inductivities inwau, .

_1
Q
I
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and Ji are the displacement and conduction currentseotisely. As was

shown above,j, is the inductive current.
Eq. (4.17) gives

o°H

ﬁtz

rot rot H+x4¢, +fﬁ H=0 (4.18)

For time-independent fields, Eq. (4.18) transfomts the London equation

rot rot H+*£ =0
Lk ’

Where/‘L2 = Z is the London depth of penetration.

As Eq. (4.17) shows, the inductivities ofgmtea (both electric and mag-
netic) are frequency — independent and equal tadheesponding parame-
ters for vacuum. Besides, such plasma has anotimelamental material
characteristic — kinetic inductivity.

Egs. (4.17) hold for both constant and vdedields. For harmonic

fields E=E sinat, Eq.(4.17) gives
_ 1 ).
rot H = (,soa) - Lkwj E, cosat (4.19)

Taking the bracketed value as the specific susnepta of plasma, we can
write

rot H=0, E, cosut . (4.20)
where
1 o
g, = W - ol :soa{l - a}’jzwe*(a} , (4.21)
] |
and €D(w):€o 1- » , where &, = L. IS the plasma frequency.
ok

Now Eq. (4.20) can be re-written as

. AN
rot H=we, 1—3 E, cosat

or
rot H=w &*( &) E,cosat ,

The &(w) —parameter is conventionally called the frequethegendent
electric inductivity of plasma. In reality howevdris magnitude includes
simultaneously the electric inductivity of vacuuid ¢he kinetic inductivity

of plasma. It can be found as

Hay = &

It is evident that there is another way of writiog
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where
0. L1
Lol = W oW
o

Le*( @) written this way includes boty andLy.

Egs. (4.21) and (4.22) are equivalent, ansl safe to say that plasma is
characterized by the frequency-dependent kinetlagtancel*( ) rather
than by the frequency-dependent electric indugtigti( «).

EqQ. (4.19) can be re-written using the patanse*( ) andLy*( @)

rot H=w £+( &) E,cosat (4.23)
or

rot H=

MLE(QJ)EOCOS@ (4.24)

Egs. (4.23) and (4.24) are equivalent.

Thus, the parametet( @) is not an electric inductivity though it has its
dimensions. The same can be said abg\t).

We can see readily that

er(@ = X,
1
Lda) = o

These relations describe the physical meaning(af) andLi*( ).
Of course, the parameter$ ) andLy*( ) are hardly usable for calcu-
lating energy by the following equations

1 o
= =&
W= ¢ §
and
1
WJ = E Lk Jo .
For this purpose the Eq. (4.19)-type fotmula wassel in [11]:

W = ; [“’dg;(“)] = (4.25)

Using Eq. (4.25), we can obtain

1 1_1 1 1
W o= S&F + EBaTLkE‘Z’ = 66+ Sk

The same result is obtainable from

1
T
we plek@] e
2 dw



As in the case of a parallel circuit, either of e tharameterg*(«) and
Le*( @), similarly to C*(aw) andL*( @), characterize completely the electro-
dynamic properties of plasma. The case

&(w)=0
Li*(@) = @

corresponds to the resonance of current.

It is shown below that under certain conaisichis resonance can be
transverse with respect to the direction of elentignetic waves.

It is known that the Langmuir resonance isgitudinal. No other reso-
nances have ever been detected in nonmagnetizethald\evertheless,
transverse resonance is also possible in such pleamd its frequency coin-
cides with that of the Langmuir resonance. To usid@d the origin of the
transverse resonance, let us consider a long tineisting of two perfectly
conducting planes (see Fig. 5). First, we exantirgline in vacuum.

If a d.c. voltagel) source is connected to an open line the energy
stored in its electric field is

Wes = ésoEzabz = ; G lj,

U . e . .
whereE = oIS the electric field strength in the line, and

bz
CEZ = & E

is the total line capacitancér = 505 is the linear capacitance awaglis

electric inductivities of the medium (plasma) inudits (F/m).
The specific potential energy of the elediietd is

1
\NE = EgoEz.

a

y \
b
‘Z
\X

Fig. 5. Two-conductor line consisting of two petfg conducting planes.

If the line is short-circuited at the distarzdrom its start and connected
to a d.c. currentl] source, the energy stored in the magnetic fielth® line
is



1 1
Whs = E%Hzabz: 5 HE F.

. | )
Since H = b’ we can write

=, &
Lz =ho

. . . a. .. .
whereLysis the total inductance of the ling = ,%B is linear inductance

and/yp is the inductivity of the medium (vacuum) in Sl/(#).
The specific energy of the magnetic field is

1 .
= ZyH
W, = JaH,

To make the results obtained more illustegtivenceforward, the meth-
od of equivalent circuits will be used along witlatmematical description.
It is seen thaCgs andLys increase with growing. The line segmerdz can
therefore be regarded as an equivalent circuit @ig

If plasma in which charge carriers can maowe fof friction is placed
within the open line and then the currentis passed through it, the charge
carriers moving at a certain velocity start storkigetic energy. Since the
current density is

j:L:neV
bz

the total kinetic energy of all moving charges is

1Em 1 ma,
= “O-abz = E5— |
Ve 2 né 2] 2né bz -
On the other hand,

W= :;Lkzlz,

whereL,sis the total kinetic inductance of the line. Hence

- m
L = &by (4.26)
Thus, the magnitude
_m
=g (4.27)

corresponding kinetic inductivity of the medium.

Earlier, we introduced this magnitude by aeotway (see Eq. (4.14)).
EqQ. (4.27) corresponds to case of uniformly distiiol d.c. current.
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Fig. 6. a. Equivalent circuit of the two-conductor line segmty 6. Equiva-

lent circuit of the two-conductor line segment @ning nondissipative
plasma;s. Equivalent circuit of the two-conductor line segm containing
dissipative plasma.

As we can see from Eg. (4.26),s, unlike Czs andLys, decreases when
grows. This is clear physically because the nundjeparallel-connected
inductive elements increases with growing The equivalent circuit of the
line with nondissipative plasma is shown in Fig. The

line itself is equivalent to a parallel lumped aitc

C:e:obz L=£,
a '’ bz

It is however obvious from calculation that theom@nce frequency is abso-
lutely independent of whatever dimension. Indeed,

1_ 1 _ne

T CL gL, gm:

This brings us to a very interesting result: theorence frequency of the
macroscopic resonator is independent of its sizemay seem that we are
dealing here with the Langmuir resonance becauselbtained frequency
corresponds exactly to that of the Langmuir resoeakiVe however know
that the Langmuir resonance characterizes longitddivaves. The wave
propagating in the phase velocity in thdirection is equal to infinity and

the wave vector is;= 0, which corresponds to the solution of Egs. (4.17)



for a line of pre-assigned configuration (Fig. Bgs. (4.18) give a well-
known result. The wave number is

o 17
K = Cz(l - a;j . (4.28)
The group and phase velocities are
o
Ve = ¢ (1 - a}JJ (4.29)
2 _ c’
Ve = AR (4.30)
o
1 1/2
where € = [ J is the velocity of light in vacuum.
Hoko

For the plasma under consideration, the pkaszcity of the electro-
magnetic wave is equal to infinity. Hence, the ribsttion of the fields and
currents over the line is uniform at each instdniroe and independent of
the z-coordinate. This implies that, on the one hand,itiductancé.y s has
no effect on the electrodynamic processes in tieednd, on the other hand,
any two planes can be used instead of conductimgeplto confine plasma
above and below.

Egs. (4.28) , (4.29) and (4.30) indicate thathave transverse resonance
with an infinite Q-factor. The fact of transverse resonance, i.€emint
from the Langmuir resonance, is most obvious whenQ-factor is not
equal to infinity. Therk,# 0 and the transverse wave is propagating in the
line along the direction perpendicular to the mogatmof charge carriers.
True, we started our analysis with plasma confimétlin two planes of a
long line, but we have thus found that the preserficich resonance is en-
tirely independent of the line size, i.e. this resece can exist in an infinite
medium. Moreover, in infinite plasma transversenasce can coexist with
the Langmuir resonance characterizing longitudimal’es. Since the fre-
guencies of these resonances coincide, both of #trerdegenerate. Earlier,
the possibility of transverse resonance was nosidened. To approach the
problem more comprehensively, let us analyze tleeggnprocesses in loss-
free plasma.

The characteristic resistance of plasma deténg the relation between
the transverse components of electric and maghelils can be found from

E U w a}—l/2
= Y = = —
2= =8 0= 2l 4]

where £o = % is the characteristic resistance in vacuum.
0
The obtained value & is typical for transverse electromagnetic waves
in waveguides. Whew — @, Z - o, andHyx - 0. At w> «), both the
electric and magnetic field components are preseptasma. The specific

energy of the fields is

1 1
W, = E‘E‘oEéy + Eﬂngx.



«
Thus, the energy accumulated in the magnetic ﬁe[d - a}’] times lower

than that in the electric field. This traditionde&rodynamic analysis is
however not complete because it disregards one sr@ryy component —
the kinetic energy of charge carriers. It turnstbat in addition to the elec-
tric and magnetic waves carrying electric and magremergy, there is one
more wave in plasma — the kinetic wave carrying kireetic energy of

charge carriers. The specific energy of this wave i

1, ,_ 1.1 ,_14d_,
== = F— =g~
W= b= B = s B
The total specific energy thus amounts to
1 1 1 .
V\é,H,j = EEEéy + EﬂOHéX + ELkJS.
Hence, to find the total specific energy accumulateunit volume of plas-
ma, it is not sufficient to allow only for the fad £ andH.
At the pointw= ),

WH:O
We = W,

i.e. there is no magnetic field in the plasma, tin@dplasma is a macroscopic
electromechanical cavity resonator of frequeagy

At w> @), the wave propagating in plasma carries three tgpesergy
— magnetic, electric and kinetic. Such wave camefloee be-called magne-

o L . - 1. =
toelectrokinetic. The kinetic wave is a current-signwave | = fIE dt, it
K

is shifted byrv2 with respect to the electric wave.

Up to now we have considered a physicallyeasible case with no
losses in plasma, which corresponds to infiQtéactor of the plasma reso-
nator. If losses occur, no matter what physicacesses caused them, the
Q-factor of the plasma resonator is a final quantigr this case the Max-
well equations become

- JH
rot E = —44—-,
o
- _ = _ 4.31
rot H :JpefE+e;"oE +ijEdt ( )
. dt Lk

The termg; ¢ E allows for the loss, and the indek near the active conduc-
tivity emphasizes that we are interested in thé datoss and do not care of
its mechanism. Nevertheless, even though we dtrywtd analyze the phys-
ical mechanism of loss, we should be able at keasteasures, r.

For this purpose, we choose a line segmerheflengthz, which is
much shorter than the wavelength in dissipativesmpa This segment is
equivalent to a circuit with the following lumpednameters

b

C = g2, (4.32)
d

L= by (4.33)

b
G = Up,ef?%, (434)



whereG is the conductance parallel@andL.
The conductancé and theQ-factor of this circuit are related as

1 |C

G=—/|—
QL - (4.35)
Taking into account Egs. (4.32) — (4.34), we obfeom Eq. (5.25)
oo =L f
o.ef L\l - (4.36)

Thus, g, e can be found by measuring the ba3iactor of the plasma res-
onator.
Using Egs. (4.36) and (4.31), we obtain

. JH
I’Ot E = _/.IOW y

_ 1 . E (4.37)
otH = — |[2E + 7

1..
E— + —[Edt
QL 0t K
The equivalent circuit of this line containing dpive plasma is shown in
Fig. 6.
Lot us consider the solution of Egs. (4.37ha pointw= «. Since

goﬁ + ijE dt =0
ot L .
We obtain
. JoH
I’Ot E = _ﬂoﬁ y
R R (4.38)
rot H = i EE.
QL

The solution of these equations is well knownhH#re is interface between
vacuum and the medium described by Egs. (4.38)suhace impedance of

the medium is
A R e - T
Htg 2Up.ef. '
whnere Yp.ef QpJLk.

There is of course some uncertainty in tpisraach because the surface
impedance is dependent on the type of the fieldectirrelation (local or
non-local). Although the approach is simplifiede tualitative results are
quite adequate.

There is however another reason for thisossrmistake in the present-
day physics [7] as an example. This study statasttere is no difference
between dielectrics and conductors at very highueacies. On this basis
the authors suggest the existence of a polarizatetor in conducting me-
dia and this vector is introduced from the relation




P = Xef,= nef,, (4.39)

wheren is the charge carrier density, is the current charge displacement.

This approach is physically erroneous because lboiyd charges can po-
larize and form electric dipoles when the exteffredl overcoming the at-
traction force of the bound charges accumulatem@kéctrostatic energy in
the dipoles. In conductors the charges are notdauma their displacement
would not produce any extra electrostatic enerdys s especially obvious
if we employ the induction technique to induce eutr(i.e. to displace
charges) in a ring conductor. In this case thenmoisestoring force to act
upon the charges, hence, no electric polarizasgoossible. In [7] the po-
larization vector found from Eq. (4.39) is introédkcinto the electric induc-
tion of conducting media

D = gE+P,
where the vectoP of a metal is obtained from Eq. (4.39), which i®mng.
Since
€ -
Tm = _W E ,
for free carriers, then
_ ne -
Pl = —E
(@ m

for plasma, and

DH{w) = &E + Pl = e{l - Z’EJE

Thus, the total accumulated energy is

1 1.1
= B+ 0B
Ve =246 2L (4.40)

However, the second term in the right-hand sidEamf(4.40) is the kinetic
energy (in contrast to dielectrics for which tresn is the potential energy).
Hence, the electric induction vectdr( «) does not correspond to the phys-
ical definition of the electric induction vector.

The physical meaning of the introduced veBto®) is clear from

_ O =_ 1 =
Pla) = WwET et (4.41)

The interpretation ofe(w) as frequency-dependent inductivity has been
harmful for correct understanding of the real pbgkpicture (especially in
the educational processes). Besides, it has draag the researchers atten-
tion from some physical phenomena in plasma, whishof all include the
transverse plasma resonance and three energy centpasf the magnetoe-
lectrokinetic wave propagating in plasma.

Below, the practical aspects of the resultioed are analyzed, which
promise new data and refinement of the current siew

Plasma can be used first of all to constractacroscopic single-
frequency cavity for development of a new classlettrokinetic plasma
lasers. Such cavity can also operate as a bandijpesss

At high enoughQ, the magnetic field energy near the transverse-reso
nance is considerably lower than the kinetic enafythe current carriers



and the electrostatic field energy. Besides, unmbstain conditions the
phase velocity can much exceed the velocity oftligherefore, if we want
to excite the transverse plasma resonance, weuwtan p

rot E 000,

1 g = JE  1.: -
— |PE + == + —[Edt= [,
Qp\/; ot ka br

where TCT Is the extrinsic current density.
Integrating Eq. (4.41) over time and dividing it &yobtain

. W JE  J’E _ 17]
a%E-'-ngoTt + dtz _5’065? (4_42)

Integrating Eq. (4.42) over the surface normalhi® vector E and taking
®g = [EdS we have

®g . PO _ 14\,
g + Stﬁdf + O0F - 1l (4.43)

or g ot

wherelcr is the extrinsic current.

Eq. (4.43) is the harmonic oscillator equatwhose right-hand side is
typical of two-level lasers [12]. If there is noagation source, we have a
“cold”.

5. Didlectric media

Anywhere in the existing literature thare no instructions that kinetic
inductance of carriers of charges plays any rolel@strodynamics processes
in dielectrics. It is not so. It appears that fhésameter in electrodynamics of
dielectrics plays not less important role, tharelectrodynamics of conduc-
tors[8,9]. We will consider the simplest case wlosgillatory processes in
atoms or dielectric molecules submit to laws mea@f oscillator

('B—afjrm:rené (5.1)

where 1, - a deviation of charges from balance positiom #&h- the factor

of elasticity characterizing elasticity of electfiarces of communication of
charges in atoms and molecules. Entering resonamaéncy of the connect-
ed charges

_B
W=
from Eg. (5.1) can write

[ = € E

" m(w-af)
It is visible that in the ratio (5.2) as parametegre is a frequency of own
fluctuations which includes weight of a chargemians that inertial proper-
ties of fluctuating charges will influence oscitdag processes in atoms and
molecules.

As the general density of a current in theiremment consists of a current

of displacement and conductivity current

(5.2)



rotH =j :gogltzmev,
That, finding speed of carriers of charges in dedieic as a derivative of
their displacement on coordinates
g=Om___ & OE
ot T m(w-«f) Ot
From Eg. (5.2) it is found

L~ __ O0E_ 1 0E
I‘OtH—jz—é‘Oﬁ Lg(@F-?) Ot ° (5.3)
But value
m
Ly=—
kd ne2

represents that other as kinetic inductance othtie@gges which are a part of
atoms or molecules of dielectrics, in the event tioaconsider their free.
Therefore Eg. (5.3) can be copied

- 1 oE
rotH=j,=¢&,| 1- —. 5.4
= ( eoLkd(af—a)f)jat &4
As value
1 _ .,
goLkd b

represents plasma frequency of charges in atomgsli@hettric molecules if
to consider these charges free Eg. (5.4) becomes:

- W, )OE
rotH=j,.=¢|1- ™ |- —. 5.5
JZ 0[ (0)2_&%2)} at ( )
And, of course, again there is a temptation to neahge
o
= |1——» 5.6
eHw) 50{ (af—a)j)j (5.6)

dielectric permeability of a dielectric depending foequency. But it, as well
as in case of conductors, it is impossible to dat & the modular parameter
including already three parameters not dependentremuency: dielectric
permeability of vacuum, own frequency of atomsha molecules which are
a part of a dielectric, and plasma frequency fariees of the charges enter-
ing into its structure if to consider their free.

Let's consider two limiting cases.

If w<a), from Eg. (5.5) can write

2ot
In this case the factor facing a derivative, ddedepend on frequency, and
represents static dielectric permeability of aetitic. As we see, it depends
on own frequency of fluctuations of atoms or moleswand from plasma fre-
quency. This result is clear. Frequency in thieagspears so low that charg-
es have time to follow a field and their inertiabperties don't influence elec-
trodynamics processes. In this case expressioratkeéts in the right part of
Eg. (5.7) represents static dielectric permeabdita dielectric. Apparently it
depends on own frequency of fluctuations of atomsiolecules of a dielec-
tric and from plasma frequency. From here at oneehave the recipe for

rotH :Tz :£0£1+ C;)Zd jaE (5.7)



creation of dielectrics with high dielectric perrbéiy. To reach it, it is nec-
essary to pack in the set volume of space the mariguantity of molecules
with as much as possible soft communications betvebarges in the mole-
cule.

The case, wherr>q) is indicative. Then
ST @, \0E
rotH=j;=¢,| 1-—>- |-,

and before our eyes the dielectric has turneddmnauctor (plasma) since the
received parity in accuracy coincides with the eigmadescribing plasma.

It is necessary to notice that circumstance thahis case anywhere such
concept as a polarization vector again wasn't used ,consideration is spent
by a finding of real currents in dielectrics on thasis of the equation of
movement of charges in these environments. Thupaaameters electric
characteristics of environment which don't depemdrequency are used.

From Eg. (5.5) it is visible that in case @fformance of equalityu=a)

the amplitude of fluctuations is equal to infinitymeans resonance presence
in this point. The infinite amplitude of fluctuatis takes place for the reason
that weren't considered losses in resonant sydtaus, its good quality is
equal to infinity. In any approach it is possibte donsider that below the
specified point we deal with a dielectric at whidielectric permeability is
equal to its static value. Above this point we ddeatady actually with metal
at which the density of carriers of a current isiaqo density of atoms or
molecules in a dielectric.

Now it is possible to consider the problemrmirthe electrodynamics point
of view on why the dielectric prism decomposes pbifgmatic light to mon-
ochromatic components or why the rainbow is formidtht it took place it is
necessary to have frequency dependence of phasd &lispersion) of elec-
tromagnetic waves in the considered environmenEdf (5.5) to add the first
Maksvell equation we can write

. oA
rotE = - —
/'IO at

r0t|:| :go 1_& 0£
(@-w) ) ot
Whence at once it is found the wave equation:
. w OE

PE=pe | 1I-—* :

ﬂO 0[ af—a%zj atz

If to consider that

1

luogoziz

Cc
where C - a velocity of light already anybody won't havdaubt that at dis-
tribution of electromagnetic waves to dielectribe frequency dispersion of
phase speed will be observed. But this dispersitinb& connected not by
that such material parameter as dielectric pernlialdlepends on frequency,
and will take part in formation of this dispersianonce three, not dependent
on frequency, physical values: own resonant frequest atoms or mole-
cules, plasma frequency of charges if to consiteir tfree, and dielectric
permeability of vacuum.



Now we will show, where also what errors tteyp if at the decision of the
considered problem to use concept of a vector @rization. We will enter a
polarization vector

- ne_ 1 -
P=—>" E
m (o -af)
Its dependence on frequency, is connected withepoes of weight at the
charges which are a part of atoms and moleculesetdctrics. The lag ef-
fect of charges doesn't allow this vector, follogvielectric field, to reach
that value which it would have in static fields. #&& electric induction is
defined by an equation:
D=cE+PE=ci - o Lt g (5.8)
m (& -a))
That the induction entered thus depends on frequenc
If it to enter now into the second equation of Maikit will become:

or

rotI:|=jZ:£06—E—nez 1 OE (5.9)
o m () ot

where |, - the total current flowing through the sample.Hg.(9.9) right

parts first a member represents a displacemenéermumn vacuum, and the
second — the current connected with presence ofemed charges in atoms
or molecules of a dielectric. In this expressioeréhwas again a specific ki-
netic inductance of the charges participating icillagory process

m

L= -
ne

The given kinetic inductance defines inductancehef connected charges.

Hence

0E_1 1 O9E
ot Lg (- ot

rotH =j, =¢,

Expression in accuracy is received coincides wigh (.3). Hence, the con-
sideration end result coincides in both ways, aothfthe mathematical point
of view of claims to a method isn't present. Buinirthe physical point of
view, and especially regarding assignment to thiarpater entered according
to Eg. (9.8) names of an electric induction, thare big claims which we
have already discussed. Certainly, it not an eteatduction, and a certain
modular parameter. But, without having understooguastion essence, all
have started to consider that dielectric permesgili dielectrics depends on
frequency. As a matter of fact, introduction ofedeactric induction in dielec-
trics only in static electric fields is physicailell-founded.

Let's show that the equivalent scheme of kecligc in this case represents
a consecutive resonant contour at which inductakeetic inductanck,,

and the capacity is equal to static dielectric peaiility of a dielectric minus
capacity of equal dielectric permeability of vacuurhus the contour appears
bridged in the capacity equal to specific dielecppermeability of vacuum.
For the proof of it we will consider a consecutngcillatory contour when
inductancelL and capacit are included consistently.



Communication between a currelt flowing through capacit§, and
the voltagelU . enclosed to it, is defined by equations:

1
UCzE'[ I Cdt
and
du
| .=C—¢ . 5.10
T, (5.10)
For inductance this communication we can write:
1
IL:IJU (dt
and
UL:L&-
dt

If the current flowing through a consecutive comfathanges under the law
| =1, sinad power failure on inductance and capacity accorgimgll make
U, =all,cosat
and
_ 1
UC__EIOCOSCJ f
and the total voltage will be equal
Uzz(a)l_—ci:)locosal :

In this parity the value standing in brackets, espnts jet resistance of a con-
secutive resonant contour which depends on frequdine pressure generat-
ed on capacity and inductance, are in an antiples®, depending on fre-
quency, the contour can have whether inductive,tidrecapacitor jet re-
sistance. In a resonance point total jet resistaheecontour to equally zero.

It is obvious that communication between titaltenclosed pressure and a
current flowing through a contour, will be definlega equation

= 1 : agz (5.11)
degg) ”
aC
Considering that resonant frequency of a contour
1
“=Jic
let's write down
C ou
|=———Z, 5.12
( aﬁj ot (5.12)
=
a,

Comparing this expression to Eg. (5.10) it is e@asgee that the consecutive
resonant contour consisting of inductariceand capacit, it is possible to
present in the form of capacity dependent on fraque

Cw)=, C

=

(5.13)



Such representation at all doesn't mean that iadaet somewhere is lost.
Simply it enters into resonant frequency of a cantq. Eg. (5.12) it only the
mathematical form of record of Eg. (5.11). Hen€éw) it is a certain modu-

lar mathematical parameter which isn't contour capa
Eg. (5.11) can be copied and in another way:

|=— 1 oU
L(af—cq)z) ot
and to consider that
1
Clw)=—r——— . 5.14
(@) (- (5.14)

Certainly, the paramete€(w) entered according Egs. (5.13) and (5.14) any
relations to capacity has no.

Let's consider Eg. (5.12) for two limiting eas
1. When w<q) it is had

1=c s
ot

This result is clear, since on low frequenciesrgsistance of the inductance

included consistently with capacity, much less c#paand it is possible not

to consider.

2. For a case whears>a) , we have
| :—iauz )
WL ot
Considering that for a harmonious signal

——L=—¢f[Udt.
3 JUy

From Eg. (5.15) we obtain

(5.15)

1
=] JUsdt.

In this case jet resistance of capacity is much, lgsn at inductance and the
chain has inductive resistance.

The carried out analysis says that in pragtioeery difficult to distinguish
behavior of resonant contours from pure inductamaeapacity, especially far
from a resonance where differences practicallya@sent. To understand true
structure of an investigated chain it is necessargmove the peak and phase
characteristic of such chain in a range of freqie=ndn case of a resonant
contour such dependence will have typical resonhatacter when on either
side of a resonance character of jet resistandebeih miscellaneous. How-
ever it doesn't mean that real elements of a contba capacity or induct-
ance depends on frequency.

The equivalent scheme of the dielectric loddtetween planes of a long
line is shown on Fig. 7.

In — the equivalent scheme of a piece of@afar all range of frequencies.
On fig. 7 ) and 7 ¢) two limiting cases are shown. In the first cadeew

a>a) the dielectric on the properties corresponds ¢orauctor, in the sec-
ond case whemvka), corresponds to a dielectric possessing statieaiec

w 2
permeability£:£0[1+af:2] :



Thus, it is possible to draw a conclusioat tthe introduction, dielectric
permeability of dielectrics depending on frequenisyalso a physical and
terminological error. If it is a question of dielec permeability of dielectrics
with which accumulation of potential energy speeah go only about static
permeability is connected. And this parameter asrestant which is not de-
pendent on frequency, is included into all parittbsracterizing electrody-
namics characteristics of dielectrics.

Lo acbfz
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a =£o —bgz Lua az
fo!
o agz
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Fig. 7. Ando- the equivalent scheme of a piece of the linedilvith a dielec-
tric, for a caseur>ay ; B- the equivalent scheme of a piece of a line foase

W<y .

The most interesting results of applicatiorsoéh new approaches take
place for dielectrics. In this case each conneptad of charges represents
separate unitary unit with the individual charaistgrs and its participation
in processes of interaction with an electromagniegid (if not to consider
communication between separate steams) strictiyithdally. Certainly, in
dielectrics not all dipoles have different charastes, and there are various
groups with similar characteristics, and each grolufihe connected charges
with identical characteristics will resound on frequency. And intensity of
absorption, and in wild spirits and radiations,tlis frequency will depend
on relative quantity of pairs the given grade. Aimhsequently can be en-
tered partial the factors considering their st@tweight in such process.
Besides, these processes will be influenced by#tnisy of dielectric prop-
erties of the molecules having certain electriemtation in a crystal lattice.
These circumstances also define that variety @nasces and them intensi-



ty which is observed in dielectric environmentse&wmore difficult struc-

ture is got by absorption or radiation lines whieeré is an electric commu-
nication between separate groups of radiatorshitndase lines can turn to
strips. Such individual approach to each separeseegof the connected
pair's charges couldn't be carried out in framewobefore existing ap-
proaches.

6. Magnetic media

The resonance phenomena in plasma and dieteate characterized by
repeated electrostatic-kinetic and kinetic-ele¢#tis transformations of the
charge motion energy during oscillations. This bardescribed as an elec-
trokinetic process, and devices based on it (laseasers, filters, etc.) can
be classified as electrokinetic units.

However, another type of resonance is alssipte, namely, magnetic
resonance. Within the current concepts of frequelependent permeabil-
ity, it is easy to show that such dependence &eadlto magnetic resonance.
For example, let us consider ferromagnetic resanafdderrite magnetized
by applying a stationary field?, parallel to thez-axis will act as an aniso-
tropic magnet in relation to the variable exterfingld. The complex perme-
ability of this medium has the form of a tensor][13

e —ia 0
ia Hri (@ 0

0 0 M
where
Q= y|Ho, 1.
Being the natural professional frequency, and
Mo = Ho(H—1)Ho (6.2)

is the medium magnetization.

Taking into account Egs. (6.1) and (6.2) Mrm(w) , We can write

_ Q*(u-Y)
p =1- 5 6.9)

Assuming that the electromagnetic wave propagdtmsyahe x-axis and
there arddy, andH, components, the first Maxwell equation becomes
_  JE JH
rot E = =Z = i X
Ix Hoth ot
Taking into account Eqg. (6.3), we obtain



= _ _ Q¥(u - 1)|oHy
rotE—,%{l af—QZJo"‘t

For uw>>Q
- _ O’ (u - 1]dHy
KHE—%P- g |a (6.4)
AssumengH, = Hgysinat and taking into account that
oH
y _ —
e —af[Hydt

Eq. (6.4) gives

rot E = %@ + Q% (1 — L[ H,dt
ot y=r,
or
rot E = ,%Q + ijl3|ydt_
ot G

Forw<< Q

rot E = ,uo,u@

ot
The quantity
1
e

can be described as kinetic capacitance. What jghiysical meaning? If the
direction of the magnetic moment does not coineidb that of the external
magnetic field, the vector of the moment start@ssional motion at the
frequencyQ about the magnetic field vector. The magnetic mame has

the potential energy,, = -MB. Like in a charged condensés,, is the
potential energy because the precessional motioreiialess (even though
it is mechanical) and it stops immediately whenagnetic field is lifted.
In the magnetic field the processional motion lastsil the accumulated
potential energy is exhausted and the vector ofnthgnetic moment be-
comes parallel to the vectof .

The equivalent circuit for this case is showrig. 8. Magnetic reso-
nance occurs at the poiat= Q andp,*(w) —» —co. It is seen that the reso-
nance frequency of the macroscopic magnetic respigtindependent of
the line size and equals.

Thus, the parameter

_ _Qw-)
%%—%{1 a}_Qz}

is not a frequency-dependent permeability. Accaydmthe equivalent cir-
cuit in
Fig. 8, it includesgly, 1 andCy
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Puc. 8. Equivalent circuit of two-conductor line lnding a magnet.

It is easy to show that three waves propagateisnctise-electric, magnetic
and a wave carrying potential energy of the preoaeasmotion of the mag-

netic moments about the vectbt,. The systems in which these types of
waves are used can also be described as electretopgtential devices.

Conclusion

Thus, it has been found that along with thedbmental parametegs,
and Upo characterizing the electric and magnetic energyuacilated and
transferred in the medium, there are two more b@siterial parameteis,
and Cy. They characterize kinetic and potential energy ttan be accumu-
lated and transferred in material medipwas sometimes used to describe
certain physical phenomena, for example, in supehectors [6],Cx has
never been known to exist. These four fundameraedrpetergeo, 1o, Lk
and Cy clarify the physical picture of the wave and remmre processes in
material media in applied electromagnetic fieldseevibusly, only electro-
magnetic waves were thought to propagate and taesfergy in material
media. It is clear now that the concept was notpleta. In fact, magnetoe-
lectrokinetic, or electromagnetopotential waves/dgran material media.
The resonances in these media also have specdiarés. Unlike closed
planes with electromagnetic resonance and energyaexje between elec-
tric and magnetic fields, material media have tymes of resonance — elec-
trokinetic and magnetopotential. Under the eledtretic resonsnce the en-
ergy of the electric field changes to kinetic eryerip the case of magne-
topotential resonance the potential energy accuedilduring the preces-
sional motion can escape outside at the precefigignency.

The notions of permittivity and permeabilidyspersion thus become
physically groundless thougi{w) andu{w) are handy for a mathematical
description of the processes in material media.s\Wild however remem-
ber their
true meaning especially where educational procemseimvolved.

It is surprising that Eq. (3.29) actuallycaants for the whole of elec-
trodynamics beause all current electrodynamicsipnog can be solved us-
ing this equation. What is then a magnetic fielti’sTs merely a convenient
mathematical procedure which is not necessarilggyev correct result (e.g.,



in the case of parallel-moving charges). Now we state that electrocur-
rent, rather than electromagnetic, waves travelpiace. Their electric field
and displacement current vectors are in the saaree@nd displaced by2.

In terms of Eq. (3.29), electrodynamics aptias can be reconstructed
completely to become simpler, more intelligible atyious.

The main ideas of this approach were destribbéhe author’s publica-
tions [5-10] However, the results reported haveendeen used, most likely
because they remain unknown. The objective of shusly is therefore to
attract more attention to them.

Any theory is dead unless important practresults are obtained of its
basis. The use of the previously unknown transvplasma resonance is
one of the most important practical results follegvirom this study.
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