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Abstract   

 

     The equation of induction and Maxwell's equations play very important role in the 

electrodynamics. However, is absent the complete system of equations, which is 

capable of solving entire spectrum of electrodynamic processes in the material media. In 

the article it is shown that Maxwell's equations can be represented in the symmetrical 

form, which solve stated problem. Is introduced the new concept of kinetic capacity, 

which describes the energy processes, connected with the precessional motion of the 

magnetic moments of atoms in the magnetized media. The concepts of the electrokinetic 

and magnetopotential waves, which describe wave processes in the nonmagnetic and 

magnetized material media, are introduced. It is shown that the equations of 

electrodynamics can be recorded in a plural manner with the use of different potentials 

and currents.  

The keywords: Maxwell's equations,  London equation, kinetic inductance, kinetic 

capacity, vector potential, electrokinetic waves,   magnetopotential waves.   
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1.  Introduction 

 

     The laws of classical electrodynamics they reflect experimental facts they are 

phenomenological. the fundamental equations of contemporary classical 

electrodynamics are Maxwell's equations. They are written as follows for the vacuum: 
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where  E
r

, H
r

are tension of electrical and magnetic field, 0D Eε=
r r

, 0B Hµ=
r r

are 

electrical and magnetic induction, 0µ , 0ε are magnetic and dielectric constant of 

vacuum. From Maxwell's equations follow the wave equations  
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these equations show that in the vacuum can be extended the plane electromagnetic 

waves, the velocity of propagation of which is equal to the speed of light  
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 For the material media  Maxwell's equation they take the following form: 
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  div D ne=
r

,                                                 (1.10) 

  0div B =
r

,                                                   (1.11) 

 

where µ% , ε%  are the relative magnetic and dielectric constants of the medium and  n, e 

, v
r

 are density, value and charge rate. 

      Equations (1.8) and (1.9) indicate that Maxwell's equations for the material media 

are asymmetrical.  
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2. Plasmo-like media  

  

      Let us write down Maxwell's equations for the plasmo-like media, in which the 

ohmic losses can be disregarded. To such media in the first approximation, can be 

related the superconductors, free electrons or ions in the vacuum (subsequently 

conductors). In this case the equation of motion of electron takes the form: 

  
dv

m eE
dt

=

r
r

,                                                (2.1) 

where  m is mass electron, e is  electron charge, E
r

is the tension of electric field, v
r

 is 

speed of the motion of charge. 

      In the work [1] it is shown that this equation can be used also for describing the 

electron motion in the hot plasma. 

Using an expression for the current density 

,j nev=
r r

                                               (2.2) 

from (2.1) we obtain the current density of the conductivity 
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in relationship (2.2) and (2.3) the value of n represents electron density. After 

introducing the designation  

2k

m
L

ne
= ,                                               (2.4) 
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In this case the value k
L  presents the specific kinetic inductance of charge carriers [2]. 

Its existence connected with the fact that charge, having a mass, possesses inertia 

properties. Pour on 0 sinE E tω=
r r

 relationship (2.5) it will be written down for the case 

of harmonics: 
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j E t
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ω
ω

= −
rr

,                                    (2.6) 

 from relationship (2.5) and (2.6) is evident that 
L

j
r

 presents inductive current, since. its 

phase is late with respect to the tension of electric field to the angle 
2

π
. 

      If charges are located in the vacuum, then during the presence of summed current it 

is necessary to consider bias current 

0 0 0 cos
E

j E t
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. 

is evident that this current bears capacitive nature, since. its phase anticipates the phase 

of the tension of electrical to the angle  
2

π
. Thus, summary current density will be 

written down [3-6]: 
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In relationship (2.7) the value, which stands in the brackets, presents summary 

susceptance of this medium σΣ  and it consists it, in turn, of the  capacitive C
σ     and by 

the inductive L
σ of the conductivity  

0

1
C L

k
L

σ σ σ ωε
ωΣ = + = − . 

Relationship (2.7) can be rewritten in other designations: 
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where 0
0

1
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ω
ε

=  is plasma frequency. 

Value 
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 
 

it is accepted to call the dielectric constant of dielectric depending on the frequency. 

Into it enter two not depending on the frequency of the parameter: the dielectric 

constant of vacuum and the kinetic inductance of charges.  

      Current density for the medium in question to be determined by three components, 

which depend on the electric field: 
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where σ  is conductivity. 

Maxwell's equations for this case take the form: 
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The system of equations (2.8) completely describes all properties of the medium 

examined. The equations of this system are not symmetrical. In the case of the absence 

of ohmic losses from (2.8) follows the equation [7] 
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For the case pour on, time-independent, equation (2.9) passes into the  London equation 

0 0
k

rot rot H H
L

µ
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r r
 , 

where 2

0
L

k
L

λ
µ

= is London depth of penetration. 

     Thus, it is possible to conclude that the equations of London being a special case of 

equation (2.9), and do not consider bias currents on medium.  Therefore they do not 

give the possibility to obtain the wave equations, which describe the processes of the 

propagation of electromagnetic waves in the superconductors. 

       

3. Dielectrics  

      Let us examine the simplest case, when oscillating processes in atoms or molecules 

of dielectric obey the law of mechanical oscillator [5]. 
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where m
r
r

 is deviation of charges from the position of equilibrium, β  is coefficient of 

elasticity, which characterizes the elastic electrical binding forces of charges in the 

atoms and the molecules. Introducing the resonance frequency of the bound charges  

0 m

β
ω = , 

we obtain from (3.1): 
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Is evident that in relationship (3.2) as the parameter is present the natural vibration 

frequency, into which enters the mass of charge. This speaks, that the inertia properties 

of the being varied charges will influence oscillating processes in the atoms and the 

molecules. 

      Since the general current density on medium consists of the bias current and 

conduction current 
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that, finding the speed of charge carriers in the dielectric as the derivative of their 

displacement through the coordinate 
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from relationship (3.2) we find 
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But the value 

2kd

m
L

ne
=  

presents the kinetic inductance of the charges, entering the constitution of atom or 

molecules of dielectrics, when to consider charges free. Therefore the relationship (3.3) 

it is possible to rewrite 
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Since the value 

2

0

1
pd

kdL
ω

ε
=  

it represents the plasma frequency of charges in atoms and molecules of dielectric, the 

relationship (3.4) takes the form: 
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it is accepted to call the dielectric constant of dielectric depending on the frequency.  

Maxwell's equations for this case take the form: 
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from where we immediately find the wave equation: 
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The  Maxwell's equations (3.7) for the dielectrics are also asymmetrical.  

 

4. Symmetrization of the equations of the induction   

 

     Maksvell in his famous treatise [1] during writing of the equations of 

electrodynamics used the substantive (total) derivative, which includes not only local 

time derivatives, but also contains convective component. Convective component 

considers the possibility of moving the frame of reference, in which are determined the 

fields with respect to the fixed frame of reference, in which the fields are assigned. 

Since during writing Maxwell's equations considered the rotary motion of frame of 

reference, he used a quaternion record of four-dimensional algebra above the real 

numbers. Hertz is later and Heaviside they excluded from the equations of induction 

convective component and wrote down them in particular derived [2]. In this form we 

use now these equations, calling their Maxwell's equations.  Maxwell's equations do 

not give the possibility to write down fields in the moving coordinate systems, if fields 

in the fixed system are known. In general form this give the possibility to make 

Lorenz, however, these conversions from the classical electrodynamics they do not 

follow. Question arises, can the principles of classical electrodynamics give correct 
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results regarding pour on in the moving coordinate systems at least in some 

approximation, and if yes, then as the equations of electromagnetic induction must 

appear in this case. 

     Writing Lorentz force 

[ ]BVeEeF
rrrr

×+=′                                       (4.1)
             

we will note fields and forces, which appear in the moving frame of reference, by 

prime. 

      Indication of how can be recorded fields in the moving coordinate system, if they 

are known in the fixed, there are already in the Faraday law, if we use ourselves the 

substantional derivative. For the study of this problem let us rewrite Faraday law in the 

precise form: 

∫
Φ

−=′′
td

d
ldE

B
rr

                                     (4.2)

 

 

     The refinement of law, is more accurate than its record, it concerns only that 

circumstance that if we determine contour integral in the moving (prime) coordinate 

system, then near E
r

, ld
r

 must stand primes. But if circulation is determined in the 

fixed coordinate system, then primes near E
r

, ld
r

 be absent, but in this case to the 

right in expression (4.2) must stand particular time derivative. Usually this 

circumstance in the literature on this question is not specified. 

     The substantional derivative in relationship (4.2) indicates the independence of the 

eventual result of appearance emf. in the outline from the method of changing the 

flow, i.e., flow can change both due to the local time derivative of the induction of and 

because the system, in which is measured ∫ ′′ ldE
rr

, it moves in the three-dimensional 

changing field B
r

. In relationship (4.2) the flow is determined from the following 

relationship  
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∫ ′=Φ SdBB
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,                                           (4.3) 

where the magnetic induction HB
rv

µ=  is determined in the fixed coordinate system, 

and the element Sd ′
r

 is determined in the moving system. Taking into account (4.3), 

from (4.2) we obtain 

∫ ∫ ′−=′′ SdB
td

d
ldE

rrrr

,                           (4.4) 

and further, since gradV
ttd

d r
+=

∂

∂
, let us write down 

[ ]∫ ∫ ∫ ∫ ′−′×−−=′′ SdBdivVldVBSd
t
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rrrrrrr
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∂

∂
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Let us immediately note that entire following presentation will be conducted under the 

assumption the validity of the  Galileo conversions, i.e. ldld
rr

=′  и SdSd
rr

=′ . From 

(1.5) follows the well known result  

[ ]BVEE
rrrr

×+=′ ,                                          (4.6) 

 

from which follows that during the motion in the magnetic field the additional electric 

field, determined by last term of relationship appears (4.6). Let us note that this 

relationship we obtained not of the conversions of Lorenz, but altogether having only 

refined Faraday law. Thus, Lorentz force is the consequence of this precise law. 

     From relationship (4.6) it follows that during the motion in the magnetic field to the 

charge acts the force perpendicular to direction of motion. However, physical nature of 

this force nowhere is examined. It should be noted that Lorentz force contradicts the 

existing laws of mechanics, since. in the mechanics is not known such force, which 
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with the uniform and rectilinear motion of body is directed normal to direction of its 

motion.  

      For explaining physical nature of the appearance of last term in relationship (4.6) 

let us write down B
r

 and E
r

 through the magnetic vector potential BA
r

: 

t

A
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rrr
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Then relationship (4.6)) can be rewritten 
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and further 
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The first two members of the right side of equality (1.9) can be gathered into the total 

derivative of vector potential on the time, namely: 

( )
B

B
AVgrad

td

Ad
E

rr
r

r
+−=′                                (4.10) 

From relationship (4.9) it is evident that the field strength, and consequently also the 

force, which acts on the charge, consists of three parts. 

     The first of them is obliged by the local derivative of magnetic vector potential on 

the time. The sense of second term of the right side of relationship (4.9) is also 

intelligible. It is connected with a change in the vector potential, but already because 

charge moves in the three-dimensional changing field of this potential. Other nature of 

last term of the right side of relationship (4.9). It is connected with the presence of 
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potential forces, since. potential energy of the charge, which moves in the potential 

field BA
r

 with the speed V
r

, is equal ( )
BAVe
rr

. The value ( )
BAVgrade
rr

gives force, 

exactly as gives force the gradient of scalar potential. 

The relationship (4.9) gives the possibility to physically explain all composing 

tensions electric fields, which appears in the fixed and that moving the coordinate 

systems. If the discussion deals with the appearance of electrical pour on out of the 

long solenoid, where there are no magnetic pour on, then in this case first term of the 

right side of equality works (4.9). In the case of unipolar generator in the formation of 

the force, which acts on the charge, two last addend right sides of equality (4.9) 

participate, introducing identical contributions. 

     Thus, to speak about the unipolar generator as about “an exception to the rule of 

flow” is impossible [4],  since flow rule, as we see, this is the totality of all three 

components. Taking rotor from both parts of equality (1.10) and taking into account 

that rot grad ≡ 0, we obtain 

td

Bd
Erot

r
r

−=′ .                                           (4.11)

 

 

If there is no motion, then relationship (4.11) is converted into the  Maxwell first 

equation. Certainly, on its informativeness relationship (4.11) strongly is inferior to 

relationship (4.2), since. in connection with the fact that rot grad ≡ 0, in it there is no 

information about the potential forces, designated through ( )
BAVgrade
rr

. Therefore, 

if us interest all components of electrical pour on, that act on the charge both in the 

fixed and in that moving the coordinate systems, we must use relationship (4.2). 

      Consequently, we must conclude that the moving or fixed charge interacts not with 

the magnetic field, but with the field of magnetic vector potential, and only knowledge 

of this potential and its evolution they give the possibility to calculate all force 
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components, which act on the charges. However, magnetic field appears altogether 

only of the gradient of such vectorial field. 

     From the aforesaid it follows that the record of Lorentz force in the terms of the 

magnetic vector potential: 

)()(][ BBB AVеgradAVеEeArotVeEeF
rrrrrrrrr

+∇−=×+=
′

          (4.12)
             

(12.4)
 

is more preferable, since. the possibility to understand the complete structure of this 

force gives. 

      Faraday law (4.2) is called the law of electromagnetic induction in connection with 

the fact that it it shows how a change in the magnetic pour on it leads to the 

appearance of electrical pour on. However, in the classical electrodynamics there is no 

law of magnetoelectric induction, which would show, how a change in the electrical 

pour on, or motion in them, it leads to the appearance of magnetic pour on. The 

development of classical electrodynamics followed along another way. Was first 

recorded the Ampere law  

∫ = IldH
rr

,                                           (4.13)
 
 

where I is current, which crosses the area, included by the outline of integration. In the 

differential form relationship (4.13) takes the form: 

σjHrot
rr

=
 .                                               (4.14)

 

where  σj
r

is current density of conductivity. 

 Maxwell supplemented relationship (4.14) with bias current 
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But by analogy with the law of electromagnetic induction (4.2) must exist the law of 

the magnetoelectric induction  

∫
Φ

=′′
td

d
ldH

D
rr

,                                         (4.16)

 

 

where ∫ ′=Φ SdDD

r

is  the flow of electrical induction. 
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In contrast to the magnetic fields, when div 0=B
r

, for the electric fields div ρ=D
r

 and 

last term in the right side of relationship (4.17) it gives the conduction current I,   and 

from relationship (4.16) the Ampere law immediately follows. From relationship 

(4.17) follows also the equality: 

][ VDH
rrr

×=                                            (4.18) 

which earlier could be obtained only from the  Lorenz conversions. 

     As shown in the work [4], from relationship (4.18) follows and Bio-Savara law, if 

for enumerating the magnetic pour on to take the electric fields of the moving charges. 

In this case the last member of the right side of relationship (4.17) can be simply 

omitted, and the laws of induction acquire the completely symmetrical form of 

.][

,][
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5. Symmetrization of Maxwell's equations 

      So that Maxwell's equations would become symmetrical, the first equation must 

take following form [12]: 

1
H

k

H
rotE H Hdt

t C
σ µ

∂
=− − − ∫

∂

r
r r r

,                        (5.1)

           

where  
H

σ  is conductivity of magnetic currents. 

      In comparison with traditional writing of the first equation of Maxwell in the right 

side of the equation to be contained two additive terms. The first member of right side 

describes ohmic losses in the magnetic materials during the imposition on them of 

variable magnetic pour on.  Let us examine the physical sense of the last member of the 

right side of equation (5.1), who earlier in the  Maxwell first equation did not be 

present.  

     At the same time to us it is known that the atom, which possesses the magnetic 

moment m
r

 , placed into the magnetic field, and which accomplishes in it precessional 

motion, has potential energy 
m

U mHµ= −
rr

. Therefore potential energy can be 

accumulated not only in the electric fields, but also in the precessional motion of 

magnetic moments, which does not possess inertia.  Similar case is located also in the 

mechanics, when the gyroscope, which precesses in the field of external gravitational 

forces, accumulates potential energy. Regarding mechanical precessional motion is also 

noninertial and immediately ceases after the removal of external forces. The same 

situation occurs also for the case of the precessing magnetic moment. Its precession is 

noninertial and ceases at the moment of removing the magnetic field. 
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       Therefore it is possible to expect that with the description of the precessional 

motion of magnetic moment in the external magnetic field in the right side of 

relationship (5.3) can appear a term of the same type as in relationship   

0

1

k

E
rotH E E dt

t L

∂
σ ε

∂
= + + ∫

r
r r r

 

 

It will only stand 
k

L , instead of  the kinetic capacity , which characterizes that potential 

energy, which has the precessing magnetic moment in the magnetic field: 

     Resonance processes in the plasma and the dielectrics are characterized by the fact 

that in the process of fluctuations occurs the alternating conversion of electrostatic 

energy into the kinetic kinetic energy of charges and vice versa. This process can be 

named electrokinetic and all devices: lasers, masers, filters, etc, which use this process, 

can be named electrokinetic. At the same time there is another type of resonance - 

magnetic. If we use ourselves the existing ideas about the dependence of magnetic 

permeability on the frequency, then it is not difficult to show that this dependence is 

connected with the presence of magnetic resonance. In order to show this, let us 

examine the concrete example of ferromagnetic resonance. If we magnetize ferrite, after 

applying the stationary field 0H  in parallel to the axis z , the like to relation to the 

external variable field medium will come out as anisotropic magnetic material with the 

complex permeability in the form of tensor [13] 

*( ) 0

*( ) 0

0 0

T

T

L

i

i

µ ω α

µ α µ ω

µ

 −
 

=  
  
 

 , 

where 
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0 0

*( ) 1 , , 1,
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M Mγ ω γ
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µ ω µ ω

Ω
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moreover 

Ω= |γ| 0H                                                    (5.2) 

is natural frequency of precession and 

0 0 0( 1)М Hµ µ= −
                                          (5.3)

 

is a magnetization of medium. Taking into account (5.2) and (5.3) for *( )
T

µ ω , it is 

possible to write down 

2

2 2

( 1)
*( ) 1T

µ
µ ω

ω

Ω −
= −

− Ω
                                     (5.4) 

This value is conventionally designated as the depending on the frequency iagnitnoy 

permeability of magnetic material.  

 if we consider that the electromagnetic wave is propagated along the axis x  and there 

are components pour on y
H , z

H , then in this case the Maxwell first equation will be 

written down: 

0

yZ
T
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rot E

x t
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rr
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Taking into account (5.4), we will obtain 
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for the case of ω >>Ω we have 
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assuming 0
sin

y y
H H tω=  and taking into account that in this case 
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for the case  ω <<  Ω we find 
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which is introduced in relationship (5.6), let us name kinetic capacity [12].  

Similarly can be described electron paramagnetic resonance. 

     With which is connected existence of kinetic capacity, and its which physical sense? 

If the direction of magnetic moment does not coincide with the direction of external 

magnetic field, then the vector of this moment begins to precess around the vector of 
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magnetic field with the frequency  Ω. The magnetic moment of m
r

 possesses in this case 

potential energy mU m B= − ⋅
rr

. This energy similar to energy of the charged capacitor 

is potential, because precessional motion, although is mechanical, however, it not inertia 

and instantly it does cease during the removal of magnetic field. However, with the 

presence of magnetic field precessional motion continues until the accumulated 

potential energy is spent, and the vector of magnetic moment will not become parallel to 

the vector of magnetic field. 

     Wave processes and the waves, which are determined by equation (5.6) they can be 

named magnetopotential. 

     Idea of the Maxwell first equation  by relationship (5.1) in combination with the 

second symmetrical  Maxwell equation gives the possibility to present with the aid of 

these equations entire spectrum of electrodynamic processes in the material media.   

 

6. Plurality of the forms of the writing of the electrodynamic laws   

 

      Magnetic and electric fields can be expressed through the vector potential of 

magnetic field and the vector potential of electric field [14]  

HH rot A=
rr

                                             (6.1)
 
 

EE rot A=
rr

                                              (6.2) 

 

Consequently, Maxwell's equations can be written down with the aid of these potentials: 

H
E

A
rot A

t
µ

∂
= −

∂

r
r

                                         (6.3)      



22 

 

E
H

A
rot A

t
ε

∂
=

∂

r
r

                                           (6.4)    

For each of these potentials it is possible to obtain wave equation, in particular 
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and to consider that in the space are extended not the magnetic and electric fields, but 

the field of electrical vector potential. 

      In this case, as can easily be seen of the relationships (6.1 - 6.4), magnetic and 

electric field they will be determined through this potential by the relationships: 
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Spatial derivative Erot A
r

 and local time derivative  EA

t

∂

∂

r

 are connected with wave 

equation (6.5). 

     Thus, the use only of one electrical vector potential makes it possible to completely 

solve the task about the propagation of electrical and magnetic pour on. Taking into 

account (6.6), Poynting's vector can be written down only through the vector 
E

A
r

: 
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. 

Characteristic is the fact that with this method of examination necessary condition is the 

presence at the particular point of space both the time derivatives, and the gradients of 

one and the same potential. 
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This task can be solved by another method, after writing down wave equation for the 

magnetic vector potential: 
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In this case magnetic and electric fields will be determined by the relationships 
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Poynting's vector in this case can be found from the following relationship: 

H

H

A
P rot A

t
µ
 ∂

= − × ∂ 

r
rr

. 

Spatial derivative  
H
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 and local time derivative of HA

t
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 are connected with wave 

equation (6.7). 

      But it is possible to enter and differently, after introducing, for example, the 

electrical and magnetic currents 

Ej rot H=
rr

, 

Hj rot E=
rr

. 

The equations also can be recorded for these currents: 
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This system in its form and information concluded in it differs in no way from 

Maxwell's equations, and it is possible to consider that in the space the magnetic or 

electric currents are extended. And the solution of the problem of propagation with the 

aid of this method will again include complete information about the processes of 

propagation. 

      The method of the introduction of new vector examined pour on it is possible to 

extend into both sides ad infinitum, introducing all new vectorial fields. Naturally in this 

case one should introduce and additional calibration, thus, there is an infinite set of 

possible writings of electrodynamic laws, but they all are equivalent according to the 

information concluded in them.  

 

7. Conclusion 

 

     In the article it is shown that Maxwell's equations can be represented in the 

symmetrical form and such equations describe entire spectrum of electrodynamic 

processes in the material media. Is introduced the new concept of kinetic capacity, 

which describes the energy processes, connected with the precessional motion of the 

magnetic moments of atoms in the magnetized media. The concepts of the electrokinetic 

and magnetopotential waves, which describe wave processes in the nonmagnetic and 

magnetized material media, are introduced. It is shown that the equations of 

electrodynamics can be recorded in a plural manner with the use of different potentials 

and currents.  
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