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New ideas in classical electrodynamics and physics of the
plasma

F. F. Mende

Introduction

     Until now, some problems of classical electrodynamics involving the laws

of electromagnetic  induction have been interpreted in a dual or even

contraversal way.  

     As an example, let us consider how the homopolar operation is explained

in different works. In [1] this is done using the Faraday low specified for the  

“discontinuous motion” case. In [2] the rule of flow is rejected and the

operation of the homopolar generator is explained on the basis of the Lorentz

force acting upon  charges. 

     The contradictory approaches are most evident in Feynman’s work [2] (see

page 53): the rule of flow states that the contour e.m.f. is equal to the

opposite-sign rate of change in the magnetic flux through the contour when

the flux varies either with the changing field or due to the motion of the

contour (or to both). Two options – “the contour moves” or “the field

changes” are indistinguishable within the rule. Nevertheless, we use these two

completely different laws to explain the rule for the two cases:  V B× for

the “moving contour” and
B

E
t

∂
∂∇ × = − for the “changing field”. And

further on: There is hardly another case in physics when a simple and accurate

general law has to be interpreted in terms of two different phenomena. 

Normally, such beautiful generalization should be based on a unified

fundamental principle. Such principle is absent in our case. The interpretation

of the Faraday law in [2] is also commonly accepted: Faraday’s observation
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led to the discovery of a new law relating electric and magnetic fields: the

electric field is generated in the region where the magnetic field varies with

time. There is however an exception to this rule too, though the above studies

do not mention it. However, as soon as the current through such a solenoid is

changed, an electric field is excited externally. The exception seem to be too

numerous. The situation really causes concern when such noted  physicists as

Tamm and Feynman have no common approach to this seemingly simple

question.  

     It is knowing [3] that classical electrodynamics fails to explain the

phenomenon of phase aberration. As applied to propagation of light, the

phenomenon can be explained only in terms of the special theory of relativity

(STR).  However, the Maxwell equations are invariant with respect to the

covariant STR transformations, and there is therefore every reason to hope

that they can furnish the required explanation of the phenomenon. 

     It is well known that electric and magnetic inductivities of material media

can depend on frequency, i.e. they can exhibit dispersion. But even Maxwell

himself, who was the author of the basic equations of electrodynamics,  

believed that ε and μ were frequency-independent fundamental constants. 

         How the idea of ε and μ-dispersion appeared and evolved is illustrated

vividly in the monograph of well-known specialists in physics of plasma [4]:

while working at the equations of electrodynamics of material, media, G. 

Maxwell looked upon electric and magnetic inductivities as constants (that is

why this approach was so lasting). Much later, at the beginning of the XX

century, G. Heavisidr and R.Wull put forward their explanation for

phenomena of optical dispersion (in particular rainbow) in which electric and

magnetic inductivities came as functions of frequency. Quite recently, in the

mid-50ies of the last century, physicists arrived at the conclusion that these

parameters were dependent not only on the frequency but on the wave vector

as well. That was a revolutionary breakaway from the current concepts. The
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importance of the problem is clearly illustrated by what happened at a seminar

held by L. D. Landau in 1954, where he interrupted A. L. Akhiezer reporting

on the subject: “Nonsense, the refractive index cannot be a function of the

refractive index”. Note, this was said by L. D. Landau, an outstanding

physicist of our time.  

     What is the actual situation? Running ahead, I can admit that Maxwell was  

right: both ε and μ are frequency – independent constants characterizing one

or another material medium. Since dispersion of electric and magnetic

inductivities of material media is one of the basic problems of the present –

day physics and electrodynamics, the system of views on these questions has

to be radically altered again (for the second time!). 

     In this context the challenge of this study was to provide a comprehensive

answer to the above questions and thus to arrive at a unified and unambiguous

standpoint. This will certainly require a revision of the relevant interpretations

in many fundamental works. 

§1. Equations of electromagnetic induction  

in moving coordinates

     The Maxwell equations do not permit us to write down the fields in

moving coordinates proceeding from the known fields measured in the

stationary coordinates. Generally, this can be done through the Lorentz

transformations but they so not follow from classical electrodynamics. In a

homopolar generator, the electric fields are measured in the stationary

coordinates but they are actually excited in the elements which move relative

to the stationary coordinate system. Therefore, the principle of the homopolar

generator operation can be described correctly only in the framework of the

special theory of relativity (STR). This brings up the question: Can classical

electrodynamics furnish correct results for the fields in a moving coordinate
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system, or at least offer an acceptable approximation? If so, what form will

the equations of electromagnetic induction have?

     The Lorentz force is

F e E e V B′ = + ×
.
                                    (1.1)

It bears the name of Lorentz it follows from his transformations which permit

writing the fields in the moving coordinates if the fields in the stationary

coordinates are known. Henceforward, the fields and forces generated in a

moving coordinate system will be indicated with primed symbols. 

     The clues of how to write the fields in moving coordinates if they are

known in the stationary system are available even in the Faraday law. Let us

specify the form of the Faraday law:

Bd
E d l

d t
Φ′ ′ = −  .                                        (1.2)

     The specified law, or, more precisely, its specified form, means that E

and dl should be primed if the contour integral is sought for in moving

coordinates and unprimed for stationary coordinates. In the latter case the

right-hand side of Eq. (1.2) should contain a partial derivative with respect to

time which fact is generally not mentioned in literature. 

     The total derivative with respect to time in Eq. (1.2) implies that the final

result for the contour e.m.f. is independent of the  variation mode of the flux. 

In other words, the flux can change either purely with time variations of B or

because the system, in which E d l′ ′ is measured, is moving in the spatially

varying field  B . In Eq. (1.2)  

B B d S ′Φ = ,                                            (1.3)

where the magnetic induction B Hμ= is measured in the stationary

coordinates and the element d S ′ in the moving coordinates. 
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Taking into account Eq. (1.3), we can find from Eq. (1.2)  

d
E d l B d S

d t
′ ′ ′= − .                                  (1.4)

     Since  
d

V grad
d t t

∂
∂= + , we can write [5]

B
E d l d S B V d l V div B d S

t
∂
∂

′ ′ ′ ′= − − × − .         (1.5)

     In this case contour integral is taken over the contourd l′ , covering the

space d S ′ . Henceforward, we assume the validity of the Galilean

transformations, i.e. d l d l′ = and d S d S′ = . Eq. (1.5) furnishes the

well-known result:

E E V B′ = + × ,                                        (1.6)

which suggests that the motion in the magnetic field excites an additional

electric field described  by the final term in Eq. (1.6). Note that Eq. (1.6) is

obtained from the slightly specified Faraday law and not from the Lorentz

transformations. 

    According to Eq. (1.6), a charge moving in the magnetic field is influenced

by a force perpendicular to the direction of the motion. However, the physical

nature of this force has never been considered. This brings confusion into the

explanation of the homopolar generator operation and does not permit us to

explain the electric fields outside an infinitely long solenoid on the basis of

the Maxwell equations.  

     To clear up the physical origin of the final term in Eq. (1.6), let us write B

and E in terms of the magnetic vector potential BA :

       

, B
B

A
B rot A E

t
∂
∂= = −  .                               (1.7)
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Then, Eq. (1.6) can be re-written as

B
B

A
E V rot A

t
∂
∂

′ = − + × ,                                (1.8)

and  further:

( ) ( )B
B B

A
E V A grad V A

t
∂
∂

′ = − − ∇ +                     (1.9)

The first two terms in the right-hand side of Eq. (1.9) can be considered as the

total derivative of the vector potential with respect to time:

( )B
B

d A
E grad V A

d t
′ = − + .                                  (1.10)

As seen in Eq. (1.9), the field strength, and hence the force acting upon a

charge consists of three components. 

     The first component describes the pure time variations of the magnetic

vector potential. The second term in the right-hand side of Eq. (1.9)  is

evidently connected with the changes in the vector potential caused by the

motion of a charge in the spatially varying field of this potential. The origin of

the last term in the right-hand side of Eq. (1.9) is quite different. It is

connected with the potential forces because the potential energy of a charge

moving in the potential field BA at the velocity V is equal to ( )e V AB . The

magnitude ( )Be grad V A describes the force just as the scalar potential

gradient does. 

     Using  Eq. (1.9), we can explain physically all the strength components of

the electronic field excited in the moving and stationary cooperates. If our

concern is with the electric fields outside a long solenoid, where the no

magnetic field, the first term in the right-hand side of Eq. (1.9) come into

play. In the case of a homopolar generator, the force acting upon a charge is

determined by the last two terms in the right-hand side of Eq. (1.9), both of

them contributing equally. 
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     It is therefore incorrect to look upon the homopolar generator as the

exception to the flow rule because, as we saw above, this rule allows for all

the three components. Using the rotor in both sides of  Eq. (1.10) and taking

into account 0rot grad ≡ , we obtain

d B
rot E

d t
′ = −  .                                      (1.11)

If motion is absent,  Eq. (1.11) turns into Maxwell equation (1.2). Equation

(1.11) is certainly less informative than Eq.  (1.2):  because of 0rot grad ≡ , 

it does not include the forces defined in terms of ( )Be grad V A . It is

therefore more reasonable to use Eq. (1.2) if we want to allow for all

components of the electric fields acting upon a charge both in the stationary

and in the moving coordinates. 

     As a preliminary conclusion, we may state that the Faraday Law,  Eq. 

(1.2), when examined closely, explains clearly all features of the homopolar

generator operation, and this operation principle is a consequence, rather than

an exception, of the flow rule, Eq. (1.2). Feynman’s statement that V B×

for the “moving contour” and
B

E
t

∂
∂∇ × = − for the “varying field” are

absolutely different laws is contrary to fact. The Faraday law is just the sole

unified fundamental principle which Feynman declared to be missing. Let us

clear up another Feynman’s interpretation. Faraday’s observation in fact led

him to discovery of a new law relating electric and magnetic fields in the

region where the magnetic field varies with time and thus generates the

electric field. This correlation is essentially true but not complete. As shown

above, the electric field can also be excited where there is no magnetic field, 

namely, outside an infinitely long solenoid. A more complete formulation
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follows from Eq. (1.9) and the relationship Bd A
E

d t
= −     is more general

than  
B

rot E
t

∂
∂= − . 

     This suggests that a moving or stationary charge interacts with the field of

the magnetic vector potential rather than with the magnetic field. The

knowledge of this potential and its evolution can only permit us to calculate

all the force components acting upon charges. The magnetic field is merely a

spatial derivative of the vector field.  

     As follows from the above consideration, it is more appropriate to write

the Lotentz force in terms of the magnetic vector potential

[ ] ( ) ( )B B BF e E e V rot A e E V A grad V A′ = + × = − ∇ + ,      (1.12)

which visualizes the complete structure of the force. 

    The Faraday law, Eq. (1.2) is referred to as the law of electromagnetic

induction because it shows how varying magnetic fields can generate electric

fields. However, classical electrodynamics contains no law of magnetoelectric

induction showing how magnetic fields can be excited by varying electric

fields. This aspect of classical electrodynamics evolved along a different

pathway. First, the law

H d l I=  ,                                              (1.13)

was known, in which  I was the current crossing the area of the integration

contour. In the differential from Eq. (1.13) becomes

rot H jσ=  ,                                              (1.14)

where jσ is the conduction current density. 

     Maxwell supplemented Eq. (1.14) with displacement current

D
rot H j

tσ
∂
∂= +   .                                           (1.15)
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However, if  Faraday had performed measurement in varying electric

induction fluxes, he would have inferred the following law

Dd
H d l

d t
Φ′ ′ =  ,                                             (1.16)

where D D d S ′Φ = is the electric induction flux. Then  

[ ]
D

H d l d S D V d l V div D d S
t

∂
∂

′ ′ ′ ′= + × + .                 (1.17)

Unlike 0divB = in magnetic fields, electric fields are characterized by

divD ρ= and the last term in the right-hand side of Eq. (1.17) describes the

conduction current I , i.e. the Ampere law follows from Eq. (1.16). Eq. (1.17)

gives

[ ]H D V= × ,                                             (1.18)

which was earlier obtainable only from the Lorentz transformation. 

    Moreover, as was shown convincingly in [2], Eq. (1.18) also leads out of

the Biot-Savart law if magnetic fields are calculated from the electric fields

excited by moving charges. In this case the last term in the right-hand side of

Eq. (1.17) can be omitted and the induction laws become completely

symmetrical. 

[ ] ,

[ ] .

B
E d l d S B V d l

t

D
H d l d S D V d l

t

∂
∂

∂
∂

′ ′ ′= − − ×

′ ′ ′= + ×

                   (1.19)

[ ] ,

[ ] .

E E V B

H H V D

′ = + ×

′ = − ×
                                       (1.20)



14

Earlier,  Eqs. (1.20) were only obtainable from the covariant Lorentz

transformations, i.e. in the framework of special theory of relativity (STR). 

Thus, the STR results accurate to the ~
V
c

terms can be derived from the

induction laws through the Galilean transformations. The STR results

accurate to the ~
2

2

V

c
terms can be obtained through transformation of Eq

(1.19).  At first, however, we shall introduce another vector potential which is

not used in classical electrodynamics. Let us assume for vortex fields [5] that

DD rot A=  ,                                              (1.21)

where DA is the electric vector potential. It then follows from Eq. (1.19) that

[ ] [ ]D
D D

A
H V A grad V A

t
∂
∂

′ = + ∇ −   ,                         (1.22)

or

[ ]D
D

A
H V rot A

t
∂
∂

′ = − ×   ,                                  (1.23)

or

[ ]D
D

d A
H grad V A

d t
′ = −   .                                   (1.24)

These equations present the law of magnetoelectric induction written in terms

of the electric vector potential. 

    To illustrate the importance of the introduction of the electric vector

potential, we come back to an infinitely long solenoid. The situation is much

the same, and the only change is that the vectors B are replaced with the

vectors D . Such situation is quite realistic: it occurs when the space between

the flat capacitor plates is filled with high electric inductivities. In  this case
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the displacement flux is almost entirely inside the dielectric. The attempt  to

calculate the magnetic field outside the space occupied by the dielectric

(where 0D ≅ ) runs into the same problem that existed for the calculation

beyond the fields E   of an infinitely long solenoid. The introduction of the

electric vector potential permits a correct solution of this problem. This

however brings up the question of priority: what is primary and what is

secondary? The electric vector potential is no doubt primary because electric

vortex fields are excited only where the rotor of such potential is non-zero. 

    As follows from Eqs. (1.20), if the reference systems move relative to each  

other, the fields E and  H are mutually connected, i.e. the movement in the

fields H induces the fields E and vice versa. But new consequences appear, 

which were not considered in classical electrodynamics. For illustration, let us

analyze two parallel conducting plates with the electric field E in between. In

this case the surface charge Sρ per unit area of each plate is Eε . If the other

reference system is made to move parallel to the plates in the field E at the

velocity VΔ , this motion will generate an additional field H V EεΔ = Δ . If a

third reference system starts to move at the velocity VΔ , within the above

moving system, this motion in the field HΔ will generate

2E V EμεΔ = Δ , which is another contribution to the field E . The field

E′ thus becomes stronger in the moving system than it is in the stationary

one. It is reasonable to suppose that the surface charge at the plates of the

initial system has increased by 2 2V Eμε Δ as well. 

    This technique of field calculation was described in [5]. If we put E and

H for the field components parallel to the velocity direction and E⊥ and

H⊥ for the perpendicular components, the final fields at the velocity V can

be written as
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0

0

,

[ ] ,

,

1
[ ] ,

E E

ZV V
E E c h V H s h

c V c

H H

V V
H H c h V E s h

c Z V c

⊥ ⊥ ⊥

⊥ ⊥ ⊥

′ =

′ = + ×

′ =

′ = − ×

                       (1.25)

where 0Z
μ
ε= is the space impedance, 

1
c μ ε= is the velocity of light

in the medium under consideration. 

The results of these transformations coincide with the STR data with the

accuracy to the ~
2

2

V

c
terms. The higher-order corrections do not coincide. It

should be noted that until now experimental tests of the special theory of

relativity have not gone beyond the ~
2

2

V

c
accuracy. 

As an example, let us analyze how Eqs. (1.25) can account for the

phenomenon of phase aberration which was inexplicable in classical

electrodynamics. 

Assume that there are plane wave components ZH and XE , and the primed

system is moving along the x-axis at the velocity XV . The field components

with in the primed coordinates can be written as

,

,

X X

Y Z

X
Z Z

E E

Vx
E H sh

c
V

H H ch
c

′ =

′ =

′ =

                                          (1.27)
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The total field  E in the moving system is

( ) ( )
1

2 2 2
X

X Y X

V
E E E E ch

c
′ ′′ = + =   .                  (1.28)

Hence, the Poynting vector no longer follows the direction of the y-axis. It is

in the xy-plane and tilted about the y-axis at an angle determined by Eqs. 

(1.27). The ratio between the absolute values of the vectors and is the

same in both the systems. This is just what is known as phase aberration in

classical electrodynamics.  

§2. Magnetic field problem

    As follows from the transformations in Eq. (1.25) if two charges move at

the relative velocity V , their interaction is determined not only by the

absolute values of the charges but by the relative motion velocity as well. The

new value of the interaction force is found as [5-11]

1 2
12
3

12
4

V
g g ch rcF

rπ ε

⊥

= ⋅  ,                                            (2.1)

where 12r is the vector connecting the charges, V⊥ is the component of the

velocity V , normal to the vector 12r . 

    If opposite-sign charges are engaged in the relative motion, their attraction

increases. If the charges have the same signs, their repulsion enhances. For

0V = , Eq. (2.1) becomes the Coulomb law . 
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    Using Eq. (2.1), a mew value of the potential ( )rϕ can be introduced at the

point, where the charge 2g is located, assuming that 2g is immobile and only

1g executes the relative motion

1
( )

4

V
g ch

cr
r

ϕ π ε

⊥

=   .                                       (2.2)

We can denote this potential as “scalar-vector”, because its value is dependent

not only on the charge involved but on the value and the direction of its

velocity as well. The potential energy of the charge interaction is

1 2

4

V
g g ch

cW
rπ ε

⊥

=    .                                    (2.3)

Eqs. (2.1), (2.2) and (2.3) apparently account for the change in the value of

the moving charges. 

    Using these equations, it is possible to calculate the force of the conductor-

current interactions and allow, through superposition, for the interaction

forces of all moving and immobile charges in the conductors. We thus obtain

all currently existing laws of electromagneticm. 

    Let us examine the force, interaction of two r-spaced conductors (Fig. 1)

assuming that the electron velocities in the conductors are 1V and 2V  . The

moving charge values per unit length of the conductors are 1g and 2g . 

In terms of the present-day theory of electromagnetism, the forces of the

interaction of the conductors can be found by two methods. 

1. One of the conductors (e.g., the lower one) generates the magnetic field

( )H r in the location of the first conductor. This field is

1 1( )
2

g V
H r

rπ=  .                                                (2.4)
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           Fig. 1.  Schematic view of force interaction between current-carreging  

           conductors of a two-conductor line in terms of the present-day model. 

The field E′ is excited in the coordinate system moving together with the

charges of the upper conductor:

2 ( )E V B V H rμ′ = × =  .                            (2.5)

I.e. the charges moving in the upper conductor experience the Lorentz force. 

This force per unit length of the conductor is

1 1 2 2 1 2

22 2

g V g V I I
F

r c r

μ
π π ε

= =   .                          (2.6)

Eq. (2.6) can be obtained in a different way. Assume that the lower conductor

excites a vector potential in the region of the upper conductor. The z –

component of the vector potential is  

1 1 1

2 2

ln ln

22Z

g V r I r
A

cc π επ ε
= − = −  .                            (2.7)

The potential energy per unit length of the upper conductor carrying the

current 2I in the field of the vector potential ZA is



20

1 2
2 2

ln

2Z

I I r
W I A

cπ ε
= = −    .                                   (2.8)

Since the force is the derivative of the potential energy with respect to the

opposite-sign coordinate, it is written as

1 2

22

I IW
F

r c r

∂
∂ π ε

= − =   .                                   (2.9)

         Both the approaches show that the interaction force of two conductors is

the result of the interaction of moving charges: some of them excite fields, the

others interact with them. The immobile charges representing the lattice do

not participate in the interaction in this scheme. But the forces of the magnetic

interaction between the conductors act just on the lattice. Classical

electrodynamics does mot explain how the moving charges experiencing this

force can transfer it to the lattice. 

The above models of iteration are in unsolvable conflict, and experts in

classical electrodynamics prefer to pass it over in silence. The conflict is

connected with estimation  of the interaction force of two parallel-moving

charges. Within the above models such two charges should be attracted. 

Indeed, the induction B caused by the moving charge 1g at the distance r is

1

2 22

g V
B

c rπ ε
=   .                                         (2.10)

If another charge 2g moves at the same velocity V in the same direction at

the distance r from the first charge, the induction at the location of 2g

produces the force attracting 1g and 2g . 
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2
1 2

2 24

g g V
F

c rπ ε
= .                                             (2.11)

An immovable observer would expect these charges to experience attraction

along with the Coulomb repulsion. For an observer moving together with the

charges there is only the Coulomb repulsion and no attraction. Neither

classical electrodynamics not the special theory of relativity can solve the

problem. 

    Physically, the introduction of magnetic fields reflects certain experimental

facts, but so far we can hardly understand where these fields come from. 

In 1976 it was reported in a serious experimental study that a charge appeared

on a short-circuited superconducting solenoid when the current in it was

attenuating. The results of [12] suggest that the value of the charge is

dependent on its velocity, which is first of all in contradiction with the charge

conservation law. The author of this study has also investigated this problem

[13].  It is useful to analyze here the interaction of current-carrying systems in

terms of Eqs. (2.1), (2.2) and (2.3) .  

    We come back again to the interaction of two thin conductors with charges

moving at the velocities 1V and 2V (Fig. 2).   

                  

                        

        Fig. 2.  Schematic view of force interaction between current-carrying                   

wires  of a two-conductor line. The lattice is charged positively. 
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1g + , 2g + and 1g− , 2g− are the immobile and moving charges, respectively, pre

unit length of the conductors. 1g + and 2g + refer to the positively charged

lattice in the lower and upper conductors, respectively. Before the charges

start moving, both the conductors are assumed to be neutral electrically, i.e. 

they contain the same number of positive and negative charges. 

Each conductor has two systems of unlike charges with the specific densities

1g + , 1g− and 2g + , 2g−  . The charges neutralize each other electrically. To

make the analysis of the interaction forces more convenient, in Fig. 2 the

systems are separated along the z - axis. The negative-sign subsystems

(electrons) have velocities 1V and 2V . The force of the interaction between the

lower and upper conductors can be considered as a sum of four forces

specified in Fig. 2 (the direction is shown by arrows). The attraction forces 3F

and 4F are positive, and the repulsion forces 1F and 2F are negative. 

   According to Eq. (1.1), the forces between the individual charge

subsystems (Fig. 2) are

1 2
1

1 2 1 2
2

1 2 1
3

1 2 2
4

,
2

,
2

,
2

.
2

g g
F

r

g g V V
F ch

r c

g g V
F ch

r c

g g V
F ch

r c

π ε

π ε

π ε

π ε

+ +

− −

− +

+ −

= −

−= −

= +

= +

                      (2.12)

By adding up the four forces and remembering that the product of unlike

charges and the product of like charges correspond to the attraction and

repulsion forces, respectively, we obtain the total specific force per unit

length of the conductor
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1 2 1 2 1 2 1
2
g g V V V V

F ch ch ch
r c c cπ εΣ

−= + − −    ,                (2.13)

where 1g and 2g are the absolute values of charges. The signs of the forces

appear in the bracketed expression. Assuming V << c , we use only the two

first terms in the expression of
V

ch
c

, i.e. 
V

ch
c

≅
2

2

1
1

2
V

c
+ . Eq. (2.13) gives

1 1 2 2 1 2
1 2 2 ,

2 2
g V g V I I

F
c r c rπ ε π εΣ = =                              (2.14)

where 1g and 2g are the absolute values of specific charges, and 1V  , 2V   are

taken with their signs. 

    It is seen that Eqs. (2.6), (2.9) and (2.13) coincide though they were

obtained by different methods. 

    According to Feynman (see the introduction), the e.m.f. of the circuit can

be interpreted using two absolutely different laws. The paradox has however

been clarified. The force of the enteraction between the current-carrying

systems can be obtained even by three absolutely different methods. But in

the third method, the motion “magnetic field” is no longer necessary and the

lattice can directly participate in the formation of the interaction forces. This

was impossible with the previous two techniques. 

    In practice the third method however runs into a serious obstacle. 

Assuming  2 0g + = and 2 0V = , i.e. the interaction, for example, between the

lower current-carrying  system and the immobile charge 2g− the interaction

force is
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2
1 2 1

2 2

1
2 2

g g V
F

c rπ εΣ = − ⋅   .                                      (2.14)

This means that the current in the conductor is not electrically neutral, and the

electric field

2
1 1

2 ,
4

g V
E

c rπ ε⊥ =                                             (2.15)

is excited around the conductor, which is equivalent to an extra specific static

charge on the conductor

2
1

1 2

V
g g

c
= − .                                              (2.16)

Before  [12], there was no evidence for generation of electric fields by d.c. 

currents. 

    When Faraday and Maxwell formulated the basic laws of electrodynamics, 

it was impossible to confirm Eq. (2.16) experimentally because the current

densities in ordinary conductors are too small to detect the effect. The

assumption that the charge is independent of its velocity and the subsequent

introduction of a magnetic field were merely voluntaristic acts. 

    In superconductors the current densities permit us to find the correction for

the charge
2

1
2~

V
g

c
experimentally. Initially, [12] was taken as evidence for

the dependence of the value of the charge on its velocity. The author of this

study has also investigated this problem [13], but, unlike [12], in his

experiments current was introduced into a superconducting coil by an

inductive non-contact method. Even in this case a charge appeared on the coil  

[13]. The experimental objects were superconducting composite Nb – Ti

wires coated with copper, and it is not cleat what mechanism is responsible
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for the charge on the coil. It may be brought by mechanical deformation

which causes a displacement of the Fermi level in the copper. Experiments on

non-coated superconducting wires may be more informative. Anyhow, the

subject has not been exhausted and further experimental findings are of

paramount importance to fundamental physics. Using this model, we should

remember that there is no reliable experimental data on static electric fields

around the conductor. According to Eq. (2.15), such fields are excited because

the value of the charge is dependent on its velocity. Is there any physical

mechanism which could maintain the interacting current-carrying systems

electrically neutral within this model? Such mechanism  does exist. To

explain it, let us consider the current-carrying circuit in Fig. 3. This is a

superconducting thin film whose thickness is smaller than the field

penetration depth in the superconductor. The current is therefore distributed

uniformly over the film thickness. Assume that the bridge connecting the

wide parts of the film is much narrower than the rest of the current-carrying

film. If persistent current is excited in such a circuit, the current density and

hence the current carrier velocity 1V in the bridge will much exceed the

velocity 0V in the wide parts of the film.  

     Such situation is possible if the current carriers are accelerated in the part

1d and slowed down in the part  2d .  But acceleration and slowing-down of

charges is possible only in electric fields. If 1V > 0V , the potential difference

between the parts 1d and 2d which causes acceleration or slowing-down is

determined as  

2
1

2
m V

U
e

=   .                                            (2.17)
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This potential difference can appear only due to the charge density gradient in

the parts 1d and  2d , i.e. the density of charge carriers decreases with

acceleration and increases with slowing down. The relation 0n > 1n should

be fulfilled, where 0n and 1n are the current-carrier densities in the wide and

narrow bridge parts of the film, respectively. It is clear that some energy is

needed to accelerate charges which have masses. Let us find out where this

energy comes from. 

  

            Fig. 3.     Schematic view of a current-carrying circuit based on a

superconducting film. 

    On acceleration the electrostatic energy available in the electrostatic field

of the current carriers converts into kinetic energy. The difference in

electrostatic energy between two identical volumes having different electron

densities can be written as

2

8
e

W n
rπ εΔ = Δ   ,                                         (2.18)
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where 0 1n n nΔ = − , e is the electron charge, r is the electron radius. 

Since

2
2

8
e

m c
rπ ε =  ,                                           (2.19)

where m is the electron mass, Eq. (1.46) can be rewritten as

2W n m cΔ = Δ  .                                          (2.20)

This energy is used to accelerate the current carriers. 

Hence, 

2
0 1

2

n m V
WΔ =   ,                                         (2.21)

and

2
1

0 2

1
2

V
n n

c
Δ = ⋅   .                                         (2.22)

The electron density in a moving flow is

2
1

1 0 2

1
1

2
V

n n
c

= − ⋅  .                                        (2.23)

We see that the change in the current-carrier density is quite small, but this

change is just responsible for the existence of the longitudinal electric field

accelerating or slowing down the charges in the parts 1d and 2d . Let us call

such fields “configuration fields” as they are connected with a certain

configuration of the conductor. These fields are available in normal
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conductors too, but they are much smaller than the fields related to the Ohmic

resistance. 

    We can expect that a voltameter connected to the circuit, like is shown in

Fig. 3, would be capable of registering the configuration potential difference

in accordance with Eq. (2.17). If we used an ordinary liquid and a manometer

instead of a voltameter, according to the Bernoulli equation, the manometer

could  register the pressure difference. For lead films, the configuration

potential difference is ~10-7 , though it is not observablt experimentally. We

can explain this before hand. As the velocities of the current carriers increase

and their densities decrease, the electric fields njrmal to their motion enhance. 

These two precesses counterbalance each other. As a result, the normal

component of the electric field has a zero balue in all parts of the film. In

terms of the considered, this looks like  

                         

                   1 2
1 2

g g
F

rπ ε

+ +

= −    , 

                   
2 2

1 2 1 2 1 2
2 2 2

1 1
1 1

2 2 2
g g V V V V

F ch
r cc cπ ε

− − −= − − ⋅ ⋅ − ⋅     , 

               
2

1 2 1 1
3 2

1
1 ,

2 2
g g V V

F ch
r ccπ ε

− +

= − ⋅                                          (2.24)

                    
2

1 2 2 1
4 2

1
1

2 2
g g V V

F ch
r ccπ ε

+ −

= − ⋅ .                                          

  

The bracketed expressions in Eqs. (2.24) allow for the motion-related change

in the density of the charges 1g− and 2g− . 

    After expanding  ch  , multiplying out and allowing only for the  ~
2

2

V

c
  

terms, Eqs. (2.24) give
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F

r c
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r

π ε

π ε

π ε

π ε
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− −

− +

+ −

≅ −
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≅
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                        (2.25)

By adding up 1F , 2F  , 3F   and 4F ,  we  obtain the total force of the

interaction

1 1 2 2 1 2

2 22 2

g V g V I I
F

c r c rπ ε π ε

− −

Σ = =  .                                (2.26)

Again, we have a relation coinciding with Eqs.  (2.6) and (2.9). However, in

this case the current-carrying conductors are neutral electrically. Indeed, if we

analyze the force interaction. For example, between the lower conductor and

the upper immobile charge 2g (putting 2 0g + = and 2 0V = ), the total

interaction force will be zero, i.e. the conductor with flowing current is

electrically neutral. 

If we consider the interaction of two parallel – moving electron flows (taking

1 2 0g g+ += = and 1 2V V= ) , according to Eq. (2.12), the total force is

1 2

2
g g

F
rπ ε

− −

Σ = −   .                                        (2.27)

It is seen that two electron flows moving at the same velocity in the absence

of a lattice experience only the Coulomb repulsion and no attraction included

into the magnetic field concept. 

    Physically, in this model the force interaction of the current-carrying

systems is not connected with any now field. The interaction is due to the
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enhancement of the electric fields normal to the direction of the charge

motion. 

    The phenomenological concept of the magnetic field of correct only when

the charges of the current carriers are compensated with the charges of the

immobile lattice, the current carriers excite a magnetic field. The magnetic

field concept is not correct for freely moving charges when there are no

compensating charges of the lattice. In this case a moving charged particle or

a flow of charged particles does not excite a magnetic field. Thus, the concept

of the phenomenological magnetic field is true but for the above case. 

It is easy to show that using the scalar-vector potential, we can obtain all the

presently existing laws of magnetism. Besides, the approach proposed permits

a solution of the problem of the interaction between two parallel-moving

charges which could not be solved in terms of the magnetic field concept. 

§3. Problem of the electromagnetic radiation

     Whatever occurs in electrodynamic, it is connected with the interaction of

moving and immobile charges. The introduction of the scalar-vector potential

answers this question. The potential is based on the laws of electromagnetic

and magnetoelectric induction. The Maxwell equations describing the wave

processes in material media also follow from these laws. The Maxwell

equations suggest that the velocity of field propagation is finite and equal to

the velocity of light. 

   The problem of electromagnetic radiation can be solved of the elementary

level using the scalar-vector potential and the finiteness of propagation of

electric processes. 

For this purpose, the retarded scalar-vector potential [1,14]

( ) 1
, ,

4

V
g ch

cr t
r

ϕ π ε

⊥′
′ = ′                                           (3.1)
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is introduced, where V⊥′ is the velocity of the charge 1g at the moment

r
t t

c
′′ = − , normal to the vector r′ , r′ is the distance between the charge 1g

and point 2 (Fig. 4), where the field is sought for at the moment t . The field

at point 2 can be found from the relation E grad ϕ= − . Assume that at the

moment
r

t
c
′

− the charge 1g is at the origin of the coordinates and its

velocity is ( )V t⊥′ . The field yE at point 2 is

( ) 0
2 (t)

4 cy

t e V
E ch

y r y
∂ ϕ ∂

∂ π ε ∂
⊥′= − = − ⋅′   .                 (3.2)

Differentiation is performed assuming r′ to be a constant magnitude. From

Eq. (3.2) we obtain

0

0

V (t) V (t)
4 c

V (t) V (t)1
4 V (t) c

y

e
E s h

c r y

e
s h

c r t

∂
π ε ∂

∂
π ε ∂

⊥ ⊥

⊥ ⊥

⊥

′ ′
= − ⋅ =′

′ ′
− ⋅ ⋅′ ′

                    (3.3)

  

        Fig. 4.  Formation of the retarded scalar-vector potential. 
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If we take only first member of expansion in the serial of
(t)

c
V

s h ⊥′ , then

using Eq. (3.3), we can write down

2 2
0 0

( , )
4 4

y y

y

x x
v t ea t

c ce
E x t

tc x c xπε πε

∂ − −
= − = −∂  ,             (3.4)

where  y

x
a t

c
− is the retarded acceleration.

This equation relationship is wave equation and defines both the amplitude

and phase responses of the wave of the electric field, radiated by the moving

charge. 

     The radiation pattern is determined by the equation

2
0

sin
( , , )

4

y

y

x
ea t

c
E x t

c x

α
α

πε

−
= −

                              
(3.5)

where of α is an angle between the direction of emission and the axis of y . 

      This diagram corresponds to the radiation pattern of dipole emission. 

Since

4

z

H

x
ev t

cx
A t

c xπ

−
− =

where  H

x
A t

c
− is the retarded vector potential. 

     Eq.  (3.5) it is possible to rewrite

02
0

sin
( , , )

4

y H

y

x x
ea t A t

c c
E x t

tc x

α
α μ

πε

− ∂ −
= − = − ∂ .

             
(3.6)
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Is again obtained complete agreement with the equations of the being late

vector potential, but vector potential is introduced here not by

phenomenological method, but with the use of a concept of the being late

scalar-vector potential. Let us note one important circumstance. In Maxwell's

equations electric fields it appears vortex. In this case the electric fields bear

gradient nature. 

     Let us demonstrate the still one possibility, which relationship gives (3.5). 

It is known that in the electrodynamics there is this concept, as the electric

dipole and dipole emission. Two charges with the opposite signs have the

dipole moment:

p ed= . 

Therefore current can be expressed through the derivative of dipole moment

on the time of

d p
ev e

t t
∂ ∂= =∂ ∂ . 

Consequently

1 p
v

e t
∂= ∂ , 

and further

2

2

1v p
a

t e t

∂ ∂= =∂ ∂
 . 

Substituting this relationship into Eq.   (3.4), we obtain the law of the dipole

emission

2

2 2
0

( )1
4

r
p t

cE
r c tπ ε

∂ −
= −

∂
.                                 (3.7)
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     In the process of fluctuating the electric dipole are created the electric

fields of two forms. In addition to this, around the being varied dipole are

formed the electric fields of static dipole, which change in the time in

connection with the fact that the distance between the charges it depends on

time. Specifically, energy of these pour on the freely being varied dipole and

it is expended on the emission. However, the summary value of field around

this dipole at any moment of time defines as superposition pour on static

dipole pour on emissions. 

      Laws (3.4), (3.5), (3.6) are the laws of the direct action, in which already

there is neither magnetic field on nor vector potentials. I.e. those structures, 

by which there were the magnetic field and magnetic vector potential, are

already taken and they no longer were necessary to us. 

      Using relationship (3.5) it is possible to obtain the laws of reflection and

scattering both for the single charges and, for any quantity of them. The

superposition of electrical field on all charges in the wave zone and it is

electrical wave. 

      If on the charge acts the electric field of 0 siny yE E tω′ ′= , then the

acceleration of charge is determined by the equation of

0 siny

e
a E t

m
ω′= − . 

Taking into account this relationship (18.5) assumes the form

2

0 02
0

sin
( , , ) sin ( ) sin ( )

4y y y

e x K x
E x t E t E t

c x cc mx

αα ω ω
πε

′ ′= − = − , (3.8)

where the coefficient of
2

2
0

sin

4

e
K

c m

α
πε

= can be named the coefficient of the

re-emission of single charge in the assigned direction. 
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      The current wave of the displacement accompanies the wave of electric

field:

2

0 2 2

sin
( , )

4

y
y

y

x
v t

E ce
j x t

t c x t

αε
π

∂ −∂
= = −∂ ∂

. 

If charge accomplishes its motion under the action of the electric field of

0 sinE E tω′ ′= , then bias current in the distant zone can be written as

2

02( , ) cos
4y y

e x
j x t E t

cc mx

ω ω
π

′= − − .                      (3.9)

The sum wave, which presents the propagation of electrical pour on (3.8) and

bias currents (3.9), can be named the electriccurrent wave. In this wave of

displacement lags behind the wave of electric field to the angle equal
2
π

.  

You can enter the magnetic waves using equation  

0

E
j rotH

t
ε ∂= =∂ ,                                      (3.10)

0divH =

introduced thus magnetic field is vortex. Comparing Eqs. (3.9) and (3.10) we

find:

2

02

( , ) sin
cos

4
z

y

H x t e x
E t

x cc mx

ω α ω
π

∂ ′= −∂ . 

Integrating this relationship on the coordinate, we find the value of the

magnetic field
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2

0

sin
( , ) sin

4z y

e x
H x t E t

cmx c
α ωπ

′= − .                      (3.11)

Eqs. (3.8), (3.9) and (3.11) can be named the laws of electric-electric

induction. They give the connection between the electric fields, applied to the

charge, and by fields and by currents induced by this charge in its

environment. Charge itself comes out  in the role of the transformer, which

ensures this reemission. The magnetic field, which can be calculated with the

aid of Eq. (3.11), is directed normally both toward the electric field and

toward the direction of propagation, and their relation at each point of the

space is equal of

0

0 0

( , ) 1
( , )

y

z

E x t
Z

H x t c
μ

ε ε= = = , 

In this equation of Z is wave drag of free space. 

     Wave drag determines the active power of losses on the single area, 

located normal to the direction of propagation of the wave: Therefore

electriccurrent wave, crossing this area, transfers through it the power, 

determined by the data by relationship. 

2
0

1
2 yP ZE= . 

this relationship will be coordinated with the Poynting vector. Therefore, for

finding all parameters, which characterize wave process, it is sufficient

examination only of electriccurrent wave and knowledge of the wave drag of

space. In this case it is in no way compulsory to introduce this concept as

magnetic field and its vector potential, although there is nothing illegal in this. 

The obtained fields satisfy Helmholtz's theorem. This theorem says, that any

single-valued and continuous the vector field of F , which turns into zero at
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infinity, can be represented uniquely as the sum of the gradient of a certain

scalar function of ϕ   and rotor of a certain vector function of C , whose

divergence is equal to zero:

F grad rotCϕ= + , 

0divC = . 

Consequently, must exist clear separation pour on to the gradient and the

vortex. It is evident that in the expressions, obtained for those induced pour

on, this separation is located. Electric fields bear gradient nature, and

magnetic field must be vortex. 

     Thus, the construction of electrodynamics should have been begun from

the acknowledgement of the dependence of scalar potential on the speed. But

nature very deeply hides its secrets, and in order to come to this simple

conclusion, it was necessary to pass way by length almost into two centuries. 

The grit, which so harmoniously were erected around the magnet poles, in a

straight manner indicated the presence of some power pour on potential

nature, but to this they did not turn attention. Therefore it turned out that all

examined only tip of the iceberg, whose substantial part remained invisible of

almost two hundred years. 

     Taking into account entire aforesaid one should assume that at the basis of

the overwhelming majority of static and dynamic phenomena at the

electrodynamics only one formula (2.1), which assumes the dependence of the

scalar potential of charge on the speed, lies. From this formula it follows and

static interaction of charges, and laws of power interaction in the case of their

mutual motion, and emission laws and scattering. This approach made it

possible to explain from the positions of classical electrodynamics such

phenomena as phase aberration and the transverse Doppler effect, which
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within the framework the classical electrodynamics of explanation did not

find.  

     Let us point out that one of the fundamental equations of induction (3.4)

could be obtained directly from the Ampere law, still long before appeared

Maksvell's equations. The Ampere law, expressed in the vector form, 

determines magnetic field at the point of  

3

1
4

Idl r
H

rπ
×=

where I is the current in the element of dl , r is the vector, directed from

dl to the point of .

     It is possible to show that

3

[ ] 1 1dlr dl
grad dl rot rot dl

r r rr
= × = − , 

but the rotor of dl is equal to zero therefore  

4 H

dl
H rot I rot A

rπ= = . 

In this equation  

4H

dl
A I

rπ= .                                         (3.12)

The remarkable property of this expression is that that the vector potential

depends from the distance to the observation point as
1
r

. Specifically, this

property makes it possible to obtain emission laws. 

      Since of I gv= , where g the quantity of charges, which falls per unit of

the length of conductor, from (3.12) we obtain:
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4H

gv dl
A

rπ= . 

for the single charge of e this relationship takes the form:

4H

ev
A

rπ= , 

In connection with the fact that electric field is determined from the equation

A
E

t
μ ∂= − ∂ , 

we obtain for this case

4 4

v
g dl ga dltE

r r
μ μπ π

∂
∂= − = − ,                        (3.13)

where of a is the acceleration of charge. 

     For the single charge of this relationship takes the form:

4
ea

E
r

μ
π= − .                                            (3.14)

in relationships (3.13) and (3.14) it is necessary to consider that the potentials

are extended with the final speed they be late to the period of
r
c

. Taking into

account the fact that for the vacuum magnetic permeability is determined by

the relationship of 2
0

1
c

μ
ε

= , these equations will take the form:

2
0

( ) ( )

4 4

r r
ga t dl ga t dl

c cE
r c r

μ π πε

− −
= − = − ,                      (3.15)

2
0

( )

4

r
ea t

cE
c rπε

−
= − .                                         (3.16)
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Eqs. (3.15) and (3.16) represent wave equations and are the solutions of

Maksvell's equations, but in this case they are obtained directly from the

Ampere law. To there remains only present the question, why

electrodynamics in its time is not banal by this method?

    It is possible to show that

3

[ ] 1 1dlr dl
grad dl rot rot dl

r r rr
= × = − . 

But the rotor of dl is equal to zero therefore  

4 H

dl
H rot I rot A

rπ= = . 

In this equation  

4H

dl
A I

rπ= .                                          (3.12)

The remarkable property of this expression is that that the vector potential

depends from the distance to the observation point as
1
r

. Specifically, this

property makes it possible to obtain emission laws. 

    Since of I gv= , where g the quantity of charges, which falls per unit of

the length of conductor, from Eq. (3.12) we obtain:

4H

gv dl
A

rπ= . 

For the single charge of e this relationship takes the form:

4H

ev
A

rπ= , 

In connection with the fact that electric field is determined from the equation

A
E

t
μ ∂= − ∂ , 

We obtain for this case



41

4 4

v
g dl ga dltE

r r
μ μπ π

∂
∂= − = − ,                       (3.13)

where  a is the acceleration of charge. 

     For the single charge of this relationship takes the form:

4
ea

E
r

μ
π= − .                                           (3.14)

In Eqs. (3.13) and (3.14) it is necessary to consider that the potentials are

extended with the final speed they be late to the period  
r
c

. Taking into

account the fact that for the vacuum  2
0

1
c

μ
ε

= , these equations take the

form:

2
0

( ) ( )

4 4

r r
ga t dl ga t dl

c cE
r c r

μ π πε

− −
= − = − ,                   (3.15)

2
0

( )

4

r
ea t

cE
c rπε

−
= − .                                     (3.16)

Of  Eqs. (3.15) and (3.16) represent wave equations and are the solutions of

Maksvell's equations, but in this case they are obtained directly from the

Ampere law. To there remains only present the question, why

electrodynamics in its time is not banal by this method?

§4. Is there any dispersion of electric and magnetic inductivities

in material   media?

    It is noted in the introduction that dispersion of electric and magnetic

inductivities of  material media is a commonly accepted idea. The idea is

however not correct [14,15]. 
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     To explain this statement and to gain a better understanding of the physical

essence of the problem, we start with a simple example showing how electric

lumped-parameter circuits can be described. As we can see below, this

example is directly concerned with the problem of our interest and will give

us a better insight into the physical picture of  the electrodynamic processes in

material media. 

    In a parallel resonance circuit including a capacitor and an inductance

coil L, the applied voltage U and the total current IΣ through the circuit are

related as

1
C L

d U
I I I C U d t

d t LΣ = + = +   ,                              (4.1)

where C

d U
I C

d t
= is the current through the capacitor, 

1
LI U d t

L
= is

the current through the inductance coil. For the harmonic voltage

0 sinU U tω=   

0

1
cosI C U t

L
ω ωωΣ = −  .                          (4.2)

The term in brackets is the total susceptance Xσ of the circuit, which consists

of the capacitive Cσ and inductive Lσ   components

1
x c L C

L
σ σ σ ω ω= + = −    .                           (4.3)

Eq. (4.2) can be re-written as

2
0

021 cosI C U t
ωω ω
ωΣ = − ,                             (4.4)

where 2
0

1
LC

ω = is the resonance frequency of a parallel circuit. 
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     From the mathematical (i.e. other than physical) standpoint, we may

assume a circuit that has only a capacitor and no inductance coil. Its

frequency – dependent capacitance is

2
0*( ) 1C C

ωω ω= −   .                                   (4.5)

Another approach is possible, which is correct too.  

Eq. (4.2) can be re-written as

2

2
0

0

1

cosI U t
L

ω
ω

ωωΣ

−
= −  .                              (4.6)

In this case the circuit is assumed to include only an inductance coil and no

capacitor. Its frequency – dependent inductance is

2

2
0

*( )

1

L
L ω

ω
ω

=
−

      .                                  (4.7)

Using the notion of Eqs. (4.5) and (4.7), we can write

0* ( ) cosI C U tω ω ωΣ = ,                                 (4.8)

or

0

1
cos

*( )
I U t

L
ωω ωΣ = −  .                              (4.9)

Eqs (4.8) and (4.9) are equivalent and each of them provides a complete

mathematical description of the circuit. From the physical point of view, 

*( )C ω and *( )L ω do not represent capacitance and inductance though

they have the corresponding dimensions. Their physical sense is as follows:

*( ) XC
σω ω=  ,                                            (4.10)

i.e. *( )C ω is the total susceptance of this circuit divided by frequency:
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1
*( )

X

L ω ω σ=  ,                                     (4.11)

and *( )L ω is the inverse value of the product of the total susceptance and

the frequency. 

      Amount *( )C ω is constricted mathematically so that it includes C and

L simultaneously. The same is true for *( )L ω . 

     We shall not consider here any other cases, e.g., series or more complex

circuits. It is however important to note that applying the above method, any

circuit consisting of the reactive components C and L can be described

either through frequency – dependent inductance or frequency – dependent

capacitance. 

    But this is only a mathematical description of real circuits with constant –

value reactive elements.  

    It is well known that the energy stored in the capacitor and inductance coil

can be found as

21
2CW C U=   ,                                            (4.12)

21
2LW L I=   .                                             (4.13)

But what can be done if we have *( )C ω and *( )L ω ? There is no way of

substituting them into Eqs. (4.12) and (4.13) because they can be both

positive and negative. It can be shown readily that the energy stored in the

circuit analyzed is  

21
2

Xd
W U

d
σ
ωΣ = ⋅   ,                                      (4.14)

or

[ ] 2*( )1
2

d C
W U

d
ω ω

ωΣ = ⋅   ,                              (4.15)

or
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2

1
*( )1

2

d
L

W U
d

ω ω
ωΣ = ⋅   .                            (4.16)

Having written Eqs. (4.14), (4.15) or (4.16) in greater detail, we arrive at the

same result:

2 21 1
,

2 2
W C U L IΣ = +                                 (4.17)

where U is the voltage at the capacitor and I is the current through the

inductance coil. Below we consider the physical meaning jog the magnitudes

( )ε ω and ( )μ ω for material media. 

§5.  Plasma media

     A superconductor is a perfect plasma medium in which charge carriers

(electrons) can move without friction. In this case the equation of motion is

d V
m e E

d t
=    ,                                        (5.18)

where m m and e are the electron mass and charge, respectively; E is the

electric field strength, V is the velocity. Taking into account the current

density

j n e V=                                              (5.19)

we can obtain from Eq. (5.18)  

2

L

n e
j E d t

m
=  .                                       (5.20)

In Eqs. (5.19) and (5.20) n is the specific charge density. Introducing the

notion

2k

m
L

n e
=   ,                                              (5.21)
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we can write

1
L

k

j E d t
L

=  .                                        (5.22)

Here kL is the kinetic inductivity of the medium [16,17]. Its existence is

based on the fact that a charge carrier has a mass and hence it possesses

inertia properties. 

     For harmonic fields we have
0

sinE E tω= and Eq. (5.22) becomes

0

1
cosL

k

j E t
L

ωω= −   .                                  (5.23)

Eqs. (5.22) and (5.23) show that Lj   is the current through the inductance

coil. 

     In this case the Maxwell equations take the following form

0

0

,

1
,C L

k

H
rot E

t

E
rot H j j E d t

t L

∂μ ∂
∂ε ∂

= −

= + = +
              (5.24)

where 0ε and 0μ are the electric and magnetic inductivities in vacuum, Cj

and Lj are the displacement and conduction currents, respectively. As was

shown above, Lj   is the inductive current. 

    Eq. (5.24) gives

2
0

0 0 2 0
k

H
rot rot H H

Lt

μ∂μ ε
∂

+ + = .                        (5.25)

For time-independent fields, Eq. (5.25) transforms into the London equation
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0 0
k

rot rot H H
L
μ+ =  ,                                    (5.26)

where 2

0

k
L

Lλ μ= is the London depth of penetration. 

    As Eq. (5.24) shows, the inductivities of plasma (both electric and

magnetic) are frequency – independent and equal to the corresponding

parameters for vacuum. Besides, such plasma has another fundamental

material characteristic – kinetic inductivity. 

     Eqs. (5.24) hold for both constant and variable fields. For harmonic fields

0
sinE E tω= , Eq. (5.24) gives

0 0

1
cos

k

rot H E t
L

ε ω ωω= − .                        (5.27)

Taking the bracketed value as the specific susceptance Xσ of plasma, we can

write

0 cosXrot H E tσ ω=  ,                                                   (5.28)

where  

2

0 0 2

1
1 *( )X

kL
ρω

σ ε ω ε ω ω ε ωω ω
= − = − =  ,                (5.29)

and
2
0

0 2*( ) 1
ωε ω ε
ω

= − , where 2
0

0

1

kL
ω ε= is the plasma frequency. 

Now Eq. (5.28) can be re-written as

2
0

0 021 cosrot H E t
ωω ε ω
ω

= −   ,                       (5.30)

or

0*( ) cosrot H E tω ε ω ω=    .                             (5.31)
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The ( )ε ω∗ – parameter is conventionally called the frequency-dependent

electric inductivity of plasma. In reality however this magnitude includes

simultaneously the electric inductivity of vacuum aid the kinetic inductivity of

plasma. It can be found as

*( ) Xσε ω ω=   .                                           (5.32)

It is evident that there is another way of writing Xσ   

2

0 2

1 1 1
1 ,

*X
k k kL L Lρ

ωσ ε ω ω ω ωω
= − = − =                   (5.33)

where

2

2

1
*( )

1

k
k

X

L
L

ρ

ω σ ωω
ω

= =
−

   .                                (5.34)

( )kL ω∗ written this way includes both 0ε and kL .

     Eqs. (5.29) and (5.33) are equivalent, and it is safe to say that plasma is

characterized by the frequency-dependent kinetic inductance ( )kL ω∗ rather

than by the frequency-dependent  electric inductivity ( )ε ω∗ . 

     Eq. (5.27) can be re-written using the parameters ( )ε ω∗ and ( )kL ω∗

  

0* ( ) cosrot H E tω ε ω ω=    ,                          (5.35)

or

0

1
cos

*( )k

rot H E t
L

ωω ω=   .                        (5.36)

Eqs. (5.35) and (5.36) are equivalent. 
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Thus, the parameter ( )ε ω∗ is not an electric inductivity though it has its

dimensions. The same can be said about ( )kL ω∗ .

We can see readily that

*( ) Xσε ω ω=     ,                                        (5.37)

1
*( )k

X

L ω σ ω=    .                                     (5.38)

These relations describe the physical meaning of ( )ε ω∗ and ( )kL ω∗ .

Of course, the parameters ( )ε ω∗ and ( )kL ω∗ are hardly usable for

calculating energy by the following equations

2
0

1
2EW Eε=                                             (5.39)

and

2
0

1
2j kW L j= .                                           (5.40)

For this purpose the Eq. (5.15)-type fotmula was devised in [18]:

[ ] 2
0

*( )1
2

d
W E

d
ω ε ω

ω= ⋅   .                                (5.41)

Using Eq. (5.41), we can obtain

2 2 2 2
0 0 0 0 0 02

1 1 1 1 1
2 2 2 2 k

k

W E E E L j
L

ε ε
ωΣ = + ⋅ = +  .             (5.42)

The same result is obtainable from

2
0

1
*( )1

2
k

d
L

W E
d

ω ω
ω= ⋅ .                                     (5.43)
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As in the case of a parallel circuit, either of  the parameters ( )ε ω∗ and

( )kL ω∗ ), similarly to  ( )C ω∗ and ( )L ω∗ , characterize completely the

electrodynamic properties of plasma. The case

( ) 0ε ω∗ =

( )kL ω∗ = ∞                                           (5.44)

corresponds to the resonance of current. 

     It is shown below that under certain conditions this resonance can be

transverse with respect to the direction of electromagnetic waves. 

It is known that the Langmuir resonance is longitudinal. No other resonances

have ever been detected in nonmagnetized plasma. Nevertheless, transverse

resonance is also possible in such plasma, and its frequency coincides with

that of the Langmuir resonance. To understand the origin of the transverse

resonance, let us consider a long line consisting of two perfectly conducting

planes (see Fig. 5). First, we examine this line in vacuum. 

    If a d.c. voltage ( )U source is connected to an open line the energy stored

in its electric field is  

2 2
0

1 1
2 2E EW E a b z C UεΣ Σ= =                          (5.45)

where
U

E
a

=   is the electric field strength in the line, and  

0E

b z
C

a
εΣ =                                           (5.46)

is the total line capacitance. 0E

b
C

a
ε= is the linear capacitance and 0ε is

electric inductivities of the medium (plasma) in SI units (F/m).

The specific potential energy of the electric field is

2
0

1
2EW Eε=   .                                         (5.47)
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     Fig. 5.  Two-conductor line consisting of two perfectly conducting planes. 

                                                  

    If the line is short-circuited at the distance z from its start and connected to

a d.c. current ( )I   source, the energy stored in the magnetic field of the line is  

2 2
0

1 1
2 2H HW H a b z L IμΣ Σ= =   .                     (5.48)

Since  
I

H
b

= , we can write

                                            0H

a z
L

b
μΣ =  ,                                          (5.49)

where HL is the total inductance of the line 0H

a
L

b
μ= is linear inductance

and 0μ is the inductivity of the medium (vacuum) in SI (H/m). 

   The specific energy of the magnetic field is

2
0

1
2HW Hμ=  .                                          (5.50)

To make the results obtained more illustrative, henceforward, the method of

equivalent circuits will be used along with mathematical description. It is seen

that EC and HL increase with growing z . The line segment dz can

therefore be regarded as an equivalent circuit (Fig. 6 ). 

     If plasma in which charge carriers can move free of friction is placed

within the open line and then the current I , is passed through it, the charge
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carriers moving at a certain velocity start storing kinetic energy. Since the

current density is

I
j n e V

b z
= =                                           (5.51)

the total kinetic energy of all moving charges is

2 2
2 2

1 1
2 2k

m m a
W a b z j I

b zn e n eΣ = ⋅ = ⋅  .                     (5.52)

On the other hand, 

21
2k kW L IΣ Σ=  ,                                         (5.53)

where kL is the total kinetic inductance of the line. Hence, 

2k

m a
L

b zn eΣ = ⋅     .                                     (5.54)

Thus, the magnitude

2k

m
L

n e
=                                             (5.55)

corresponding kinetic inductivity of the medium. 

     Earlier, we introduced this magnitude by another way (see Eq. (4.21)). 

Eq. (5.55) corresponds to case of uniformly distributed d.c. current. 

As we can see from Eq. (5.54), HL unlike EC and kL , decreases when z

grows. This is clear physically because the number of parallel-connected

inductive elements increases with growing z .  The equivalent circuit of the

line with nondissipative plasma is shown in Fig. 6 . The line itself is

equivalent to a parallel lumped circuit:  

0b z
C

a
ε= and

kL a
L

b z
= .                                  (5.56)

It is however obvious from calculation that the resonance frequency is

absolutely independent of whatever dimension. Indeed, 
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2
2

0 0

1 1

k

n e
C L L mρω ε ε= = =   .                                (5.57)

This brings us to a very interesting result: the resonance frequency of the

macroscopic resonator is independent of its size. It may seem that we are

dealing here with the Langmuir resonance because the obtained frequency

corresponds exactly to that of the   Langmuir resonance. 

Fig. 6.  . Equivalent circuit of the two-conductor line segment;

. Equivalent circuit of the two-conductor line segment containing

nondissipative plasma;

. Equivalent circuit of the two-conductor line segment containing dissipative

plasma. 
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     We however know that the Langmuir resonance characterizes longitudinal

waves. The wave propagating in the phase velocity in the z - direction is

equal to infinity and the wave vector is 0zk = , which corresponds to the

solution of  Eqs. (5.24) for a line of pre-assigned configuration (Fig. 5). Eqs. 

(5.25) give a well-known result. The wave number is

22
2 0

2 21zk
c

ωω
ω

= −  .                                        (5.58)

The group and phase velocities are

2
2 2 0

21gV c
ω
ω

= −  ,                                        (5.59)

2
2

2
0
21

F

c
V

ω
ω

=
−

  ,                                          (5.60)

where

1/ 2

0 0

1
c μ ε= is the velocity of light in vacuum. 

For the plasma under consideration, the phase velocity of the electromagnetic

wave is equal to infinity. Hence, the distribution of the fields and currents

over the line is uniform at each instant of time and independent of the z -

coordinate. This implies that, on the one hand, the inductance HL has no

effect on the electrodynamic processes in the line and, on the other hand, any

two planes can be used instead of conducting planes to confine plasma above

and below.  

     Eqs. (5.58) , (5.59) and (5.60) indicate that we have transverse resonance

with an infinite Q - factor. The fact of transverse resonance, i.e. different

from the Langmuir resonance, is most obvious when the Q - factor is not

equal to infinity. Then zk ≠ 0  and the transverse wave is propagating in the

line along the direction perpendicular to the movement of charge carriers. 
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True, we started our analysis with plasma confined within two planes of a

long line, but we have thus found that the presence of such resonance is

entirely independent of the line size, i.e. this resonance can exist in an infinite

medium. Moreover, in infinite plasma transverse resonance can coexist with

the Langmuir resonance characterizing longitudinal waves. Since the

frequencies of these resonances coincide, both of them are degenerate. 

Earlier, the possibility of transverse resonance was not considered. To

approach the problem more comprehensively, let us analyze the energy

processes in loss-free plasma. 

     The characteristic resistance of plasma determining the relation between

the transverse components of electric and magnetic fields can be found from

1/ 22
0

0 21y

x z

E
Z Z

H k
ρμ ω ω

ω

−

= = = −  ,                         (5.61)

where 0
0

0

Z
μ
ε= is the characteristic resistance in vacuum. 

     The obtained value of Z is typical for transverse electromagnetic waves in

waveguides. When 0ω ω→ , Z → ∞ , and 0xH → . At ω > 0ω , both the

electric and magnetic field components are present in plasma. The specific

energy of the fields is  

2 2
, 0 0 0 0

1 1
2 2E H y xW E Hε μ= +  .                            (5.62)

Thus, the energy accumulated in the magnetic field is
2

21 ρω
ω

− times lower

than that in the electric field. This traditional electrodynamic analysis is

however not complete because it disregards one more energy component – the

kinetic energy of charge carriers. It turns out that in addition to the electric

and magnetic waves carrying electric and magnetic energy, there is one more
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wave in plasma – the kinetic wave carrying the kinetic energy of charge

carriers. The specific energy of this wave is

2
2 2 2
0 0 0 02 2

1 1 1 1
2 2 2k k

k

W L j E E
L

ρω
ε

ωω
= = ⋅ =  .                    (5.63)

The total specific energy thus amounts to

2 2 2
, , 0 0 0 0 0

1 1 1
2 2 2E H j y x kW E H L jε μ= + +  .                      (5.64)

Hence, to find the total specific energy accumulated in unit volume of plasma, 

it is not sufficient to allow only for the fields E and H . 

At the point 0ω ω=

0HW =                                                 (5.65)

                                                  E kW W=  , 

i.e. there is no magnetic field in the plasma, and the plasma is a macroscopic

electromechanical cavity resonator of frequency 0ω . 

     At ω > 0ω the wave propagating in plasma carries three types of energy –

magnetic, electric and kinetic. Such wave can therefore be-called

magnetoelectrokinetic. The kinetic wave is a current-density wave

1

k

j E d t
L

= . It is shifted by
2
π

with respect to the electric wave. 

Up to now we have considered a physically unfeasible case with no losses in

plasma, which corresponds to infinite Q-factor of the plasma resonator. If

losses occur, no matter what physical processes caused them, the Q-factor of
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the plasma resonator is a final quantity. For this case the Maxwell equations

become

0

. 0

,

1
p ef

k

H
rot E

t

E
rot H E E d t

t L

∂μ ∂
∂σ ε ∂

= −

= + +
                (5.66)

The term .p ef Eσ allows for the loss, and the index ef near the active

conductivity emphasizes that we are interested in the fact of loss and do not

care of its mechanism. Nevertheless, even though we do not try to analyze the

physical mechanism of loss, we should be able at least to measure .p efσ . 

For this purpose, we choose a line segment of the length 0z which is much

shorter than the wavelength in dissipative plasma. This segment is equivalent

to a circuit with the following lumped parameters

0
0 ,

b z
C

a
ε=                                              (5.67)

0

,k

d
L L

b z
=                                              (5.68)

0
. ,ef

b z
G

aρσ=                                          (5.69)

where G   is the conductance parallel to C and L . 

The conductance  G and the Q - factor of this circuit are related as  

1 C
G

Q L
=   .                                          (5.70)

Taking into account Eqs. (5.67) – (5.69), we obtain from Eq. (2.70)
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0
.

1
ef

p kQ Lρ
εσ =  .                                         (5.71)

Thus, .p efσ can be found by measuring the basic pQ - factor of the plasma

resonator. 

     Using Eqs. (5.71) and (5.66), we obtain

0

0
0

,

1 1
.

p k k

H
rot E

t

E
rot H E E d t

Q L t L

∂μ ∂

ε ∂ε ∂

= −

= + +

                (5.72)

The equivalent circuit of this line containing dissipative plasma is shown in

Fig. 6 . 

     Let us consider the solution of Eqs. (5.72) at the point pω ω= . Since  

0
1

0 =+ tdE
Lt

E

k∂
∂

ε .                                     (5.73)  

We obtain

0

0

,

1
.

P k

H
rot E

t

rot H E
Q L

∂μ ∂

ε

= −

=

                                      (5.74)

The solution of these equations is well known. If there is interface between

vacuum and the medium described by Eqs. (5.74), the surface impedance of

the medium is
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0

. .

(1 )
2

tg p

tg p ef

E
Z i

H

ω μ
σ= = +   ,                              (5.75)

where 0
.

1
p ef

p kQ L
εσ = here is of course some uncertainty in this approach

because the surface impedance is dependent on the type of the field-current

relation (local or non-local). Although the approach is simplified, the

qualitative results are quite adequate. True, a more rigorous solution is

possible. 

    The wave propagating deep inside the medium decreases by the law

ef ef

z z
i

e eδ δ− −
⋅  .  

In this case the phase velocity is

.F p efV ω σ= ,                                          (5.76)

where 2
.

0 .

2
p ef

p p ef

δ μ ω σ= is the effective depth of field penetration in the

plasma. The above relations characterize the wave process in plasma. For

good conductors we usually have
0

1efσ
ω ε >>  . In such a medium the

wavelength is

2gλ πδ= .                                             (5.77)

\

I.e. much shorter than the free-space wavelength. Further on we concentrate

on the case gλ >> 0λ at the point pω ω= , i.e. FV ⏐ω = ω >>c . 

We have found that ( )ε ω is not dielectric inductivity permittivity. Instead, 

it includes two frequency-independent parameters  0ε and kL . What is the

reason for the physical misunderstanding of the parameter ( )ε ω ? This occurs
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first of all because for the case of plasma the  
1

k

E d t
L

- type term is not

explicitly present in the second Maxwell equation. 

    There is however another reason for this serious mistake in the present-day

physics [7] as an example. This study states that there is no difference

between dielectrics and conductors at very high frequencies. On this basis the

authors suggest the existence of a polarization vector in conducting media and

this vector is introduced from the relation

m mP e r n e r= Σ = ,                                  (5.78)

where n is the charge carrier density, mr is the current charge displacement. 

This approach is physically erroneous because only bound charges can

polarize and form electric dipoles when the external field overcoming the

attraction force of the bound charges accumulates extra electrostatic energy in

the dipoles. In conductors the charges are not bound and their displacement

would not produce any extra electrostatic energy. This is especially obvious if

we employ the induction technique to induce current (i.e. to displace charges)

in a ring conductor. In this case there is no restoring force to act upon the

charges, hence, no electric polarization is possible. In  [18] the polarization

vector found from Eq. (5.78) is introduced into the electric induction of

conducting media

0 ,D E Pε= +                                        (5.79)

where the vector P of a metal is obtained from Eq. (5.78), which is wrong. 

Since  

2

2m

e
r E

m ω
= −    ,                                   (5.80)

for free carriers, then

2

2* ( )
n e

P E
m

ω
ω

= −      ,                              (5.81)
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for plasma, and

2

0 0 2* ( ) *( ) 1 pD E P E
ω

ω ε ω ε
ω

= + = −   .                  (5.82)

Thus, the total accumulated energy is

2 2
0 2

1 1 1
2 2

k

W E E
L

ε
ωΣ = + ⋅  .                            (5.83)

However, the second term in the right-hand side of Eq. (5.83) is the kinetic

energy (in contrast to dielectrics for which this term is the potential energy). 

Hence, the electric induction vector ( )D ω∗ does not correspond to the

physical definition of the electric induction vector. 

The physical meaning of the introduced vector *( )P ω is clear from

2

1
*( ) L

k

P E E
L

σω ω ω
= =    .                               (5.84)

The interpretation of ( )ε ω as frequency-dependent inductivity has been

harmful for correct understanding of the real physical picture (especially in

the educational processes). Besides, it has drawn away the researchers

attention from some physical phenomena in plasma, which first of all include

the transverse plasma resonance and three energy components of the

magnetoelectrokinetic wave propagating in plasma. 

Below, the practical aspects of the results obtained are analyzed, which

promise new data and refinement of the current views.  

      Plasma can be used first of all to construct a macroscopic single-

frequency cavity for development of a new class of electrokinetic plasma

lasers. Such cavity can also operate as a band-pass filter.  

     At high enough pQ the magnetic field energy near the transverse

resonance is considerably lower than the kinetic energy of the current carriers

and the electrostatic field energy. Besides, under certain conditions the phase
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velocity can much exceed the velocity of light. Therefore, if we want to excite

the transverse plasma resonance, we can put

0
0

0,

1 1
,CT

p k k

rot E

E
E E d t j

Q L t L
ε ∂ε ∂

≅

+ + =
                  (5.85)

where CTj   is the extrinsic current density. 

Integrating Eq. (5.84) over time and dividing it by 0ε obtain

2
2

2
0

1
.p CT

p
p

jE E
E

Q t tt

ω ∂∂ ∂ω ∂ ε ∂∂
+ ⋅ + = ⋅                         (5.86)

Integrating Eq. (5.86) over the surface normal to the vector E and taking

,E E d SΦ = we have

2
2

2
0

1p CTE E
p E

p

I
Q t tt

ω ∂∂ ∂ω ∂ ε ∂∂
Φ ΦΦ + ⋅ + = ⋅ ,                     (5.87)

where CTI is the extrinsic current. 

Eq. (5.87) is the harmonic oscillator equation whose right-hand side is typical

of two-level lasers [19]. If there is no excitation source, we have a “cold”. 

Laser cavity in which the oscillation damping follows the exponential law

2( ) (0)
P

P P
ti t Q

E Et e e
ω

ω −
Φ = Φ ⋅  ,                                 (5.88)

i.e. the macroscopic electric flow ( )E t oscillates at the frequency pω . The

relaxation time can be round as  

2 P

P

Qτ ω=   .                                               (5.89)

If this cavity is excited by extrinsic currents, the cavity will operate as a band-

pass filter with the pass band
2

p

pQ

ω
ωΔ = . 
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     Transverse plasma resonance offers another important application – it can

be used to heat plasma. High-level electric fields and, hence, high change-

carrier energies can be obtained in the plasma resonator if its Q - factor is

high, which is achievable at low concentrations of plasma. Such cavity has the

advantage that the charges attain the highest velocities far from cold planes. 

Using such charges for nuclear fusion, we can keep the process far from the

cold elements of the resonator. 

     Such plasma resonator can be matched easily to the communication line. 

Indeed, the equivalent resistance of the resonator at the point pω ω= is

R =
0

1
.kP La Q

G b z ε=                                     (5.90)

The communication lines of sizes La and Lb should be connected to the

cavity either through a smooth junction or in a stepwise manner. If Lb b= , 

the matching requirement is

0

0 0 0

,p kL

L

a Q La
b b z

μ
ε ε=                               (5.91)

0 0

1p k

L

a Q L
a z μ =  .                                  (5.92)

It should be remembered that the choice of the resonator length 0z must

comply with the requirement 0z << gλ ⏐ω= ωp.

    Development of devices based on plasma resonator can require

coordination of the resonator and free space. In this case the following

condition is important:

0

0 0 0

p k
a Q L
b z

μ
ε ε=  ,                                       (5.93)

or
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0 0

1p k
a Q L
b z μ =   .                                         (5.94)

Such plasma resonators can be excited with d.c. current, as is the case with a

monotron microwave oscillator [20]. It is known that a microwave diode (the

plasma resonator in our case) with the transit angle of  ~
5
2

π develops

negative resistance and tends to self-excitation. The requirement of the transit

angle equal to ~
5
2

π correlates with the following d.c. voltage applied to the

resonator:  

2 2 2 2

0 2 2 2
0 0

0,32 0,32
,

4 4
pa m c a n e

U
e

ω
π π ε μ

= =                           (5.95)

where a is the distance between the plates in the line. 

It is quite probable that this effect is responsible for the electromagnetic

oscillations in semiconductive lasers. 

§6. Dielectric media

    Applied fields cause polarization of bound charges in dielectrics. The

polarization takes some energy from the field source, and the dielectric

accumulates extra electrostatic energy. The extent of displacement of the

polarized charges from the equilibrium is dependent on the electric field and

the coefficient of elasticity β , characterizing the elasticity of the charge

bonds. These parameters are related as

2 ,m m

e
r r E

m m
βω− + =                                        (6.1)

where mr is the charge displacement from the equilibrium. 
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Putting 0ω for the resonance frequency of the bound charges and taking into

account that 0 m
βω = we obtain from Eq. (6.1)

2 2( )m
o

eE
r

m ω ω
= −

−
                                        (6.2)

The polarization vector becomes

2

2 2
0

1
*

( )m

n e
P E

m ω ω
= − ⋅

−
                                      (6.3)

Since

0 ( 1) ,P Eε ε= −                                               (6.4)

we obtain

2

2 2
0 0

1
*( ) 1

n e
m∂ε ω ε ω ω

′ = − ⋅
−

 .                               (6.5)

The quantity * ( )∂ε ω′ is commonly called the relative frequency dependably

electric inductivity. Its absolute value can be found as

2

0 2 2
0 0

1
*( ) 1 .

n e
m∂ε ω ε ε ω ω

= − ⋅
−

                         (6.6)

Once again, we arrive at the frequency-dependent dielectric permitlivity. Let

us take a closer look at the quantity * ( )∂ε ω . As before, we introduce

2k

m
L

n e∂ = and .
0

1
p

kL∂
∂

ω ε= and see immediately that the vibrating

charges of the dielectric have masses and thus possess inertia properties. As a
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result, their kinetic inductivity would make itself evident too. Eq. (6.6) can be

re-written as

2

0 2 2
0

*( ) (1 ).p ∂
∂

ω
ε ω ε

ω ω
= −

−
                               (6.7)

It is appropriate to examine two limiting cases: ω >> 0ω   and ω << 0ω .

If ω   >> 0ω  , 

2

0 2*( ) (1 )p ∂
∂

ω
ε ω ε

ω
= −   ,                             (6.8)

and the dielectric behaves just like plasma. This case has prompted the idea

that at high frequencies there is no difference between dielectrics and plasma. 

The idea served as a basis for introducing the polarization vector in

conductors [18]. The difference however exists and it is of fundamental

importance. In dielectrics, because of inertia, the amplitude of charge

vibrations is very small at high frequencies and so is the polarization vector. 

The polarization vector is always zero in conductors. 

For ω << 0ω , 

2

0 2
0

*( ) (1 )p ∂
∂

ω
ε ω ε

ω
= +   ,                            (6.9)

and the permittivity of the dielectric is independent of frequency. It is

2

2
0

(1 )p ∂ω
ω

+ times higher than in vacuum. This result is quite clear. At ω >>

0ω the inertia properties are inactive and permittivity approaches its value in

the static field. 
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Fig. 7. Equivalent circuit of two-conductor line segment with a dielectric:  

– 0ω ω>> ;   – 0ω ω<< ;  – the whole frequency range. 

The equivalent circuits corresponding to these two cases are shown in Figs. 

7 and . It is seen that in the whole range of frequencies the equivalent

circuit of the dielectric acts as a series oscillatory circuit parallel-connected to

the capacitor operating due to the electric inductivity  0ε of vacuum (see Fig. 

7 ). The resonance frequency of this series circuit is obviously obtainable

from
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2

2

0 2
0

1

p
kL ∂

ω
ω

ε
ω

=    .                                    (6.10)

Lake in the case of plasma, 2
0ω is independent of the line size, i.e. we have a

macroscopic resonator whose frequency is only true when there are no bonds

between individual pairs of bound charges.  

Like for plasma, * ( )∂ε ω is specific susceptance of the dielectric divided by

frequency. However, unlike plasma, this parameter contains three frequency-

independent components: 0ε , kL ∂ and  the static permittivity of the

dielectric

2

0 2
0

p ∂ω
ε

ω
. In the dielectric, resonance occurs when

* ( ) .∂ε ω → − ∞

Three waves-magnetic, electric and kinetic-propagate in it too. Each of them

carries its own type of energy. It not is not problematic to calculate them but

we omit this here to save room. 

§7. Magnetic media

         The resonance phenomena in plasma and dielectrics are characterized by

repeated electrostatic-kinetic and kinetic-electrostatic transformations of the

charge motion energy during oscillations. This can be described as an

electrokinetic process, and devices based on it (lasers, masers, filters, etc.) can

be classified as electrokinetic units. 

However, another type of resonance is also possible, namely, magnetic

resonance. Within the current concepts of frequency-dependent permeability, 

it is easy to show that such dependence is related to magnetic resonance. For

example, let us consider ferromagnetic resonance. A ferrite magnetized by



69

applying a stationary field  0H parallel to the z - axis will act as an

anisotropic magnet in relation to the variable external field. The complex

permeability of this medium has the form of a tensor [21]:

*( ) 0

*( ) 0

0 0

T

T

L

i

i

μ ω α

μ α μ ω
μ

−

=     , 

where

0 0

2 2 2 2
0 0

* ( ) 1 , , 1,
( ) ( )T L

M Mγ ω γ
μ ω α μ

μ ω μ ω
Ω

= − = =
− Ω − Ω

0HγΩ =                                                 (7.1)

Being the natural professional frequency, and  

0 0 0( 1)M Hμ μ= −                                           (7.2)

is the medium magnetization. 

Taking into account Eqs. (7.1) and (7.2) for * ( )Tμ ω , we can write

2

2 2

( 1)
*( ) 1T

μμ ω
ω
Ω −= −

− Ω
  .                                  (7.3)

Assuming that the electromagnetic wave propagates along the x-axis and there

are yH and zH components, the first Maxwell equation becomes  

0
yZ

T

HE
rot E

x t

∂∂ μ μ∂ ∂= =  . 

Taking into account Eq. (7.3), we obtain

2

0 2 2

( 1)
1 yH

rot E
t

∂μμ ∂ω
Ω −= −

− Ω
  . 

For ω >> Ω
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( )rϕ t

H
Erot y

∂
∂

ω
μμ −Ω−=

2

2

0

)1(
1   .                           (7.4)

Assumeng 0 siny yH H tω= and taking into account that  

2y
y

H
H d t

t

∂
ω∂ = −  . 

Eq. (7.4) gives

2
0 0 ( 1)y

y

H
rot E H d t

t

∂
μ μ μ∂= + Ω −  , 

or

0

1y
y

k

H
rot E H d t

t C

∂
μ ∂= + += tdH

Ct

H
Erot y

k

y 1
0 ∂

∂
μ  . 

For ω << Ω

0
yH

rot E
t

∂
μ μ ∂=    . 

The quantity

2
0

1
( 1)kC

μ μ
=

Ω −

can be described as kinetic capacitance. What is its physical meaning? If the

direction of the magnetic moment does not coincide with that of the external

magnetic field, the vector of the moment starts precessional motion at the

frequency Ω about the magnetic field vector. The magnetic moment m has

the potential energy mU m B= − ⋅ . Like in a charged condenser, mU is the

potential energy because the precessional motion is inertialess (even though it

is mechanical) and it stops immediately when the magnetic field is lifted. In

the magnetic field the processional motion lasts until the accumulated
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potential energy is exhausted and the vector of the magnetic moment becomes

parallel to the vector 0H . 

The equivalent circuit for this case is shown in Fig. 8. Magnetic resonance

occurs at the point ω = Ω and ( )μ ω∗ → −∞ . It is seen that the resonance

frequency of the macroscopic magnetic resonator is independent of the line

size and equals Ω . 

Thus, the parameter

2

0 2 2

( 1)
*( ) 1H

μμ ω μ
ω
Ω −= −

− Ω

is not a frequency-dependent permeability. According to the equivalent circuit

in  

Fig. 8, it includes 0μ , μ and k                                                                               

                                                                                                                                             

            . 8.  Equivalent circuit of  two-conductor line including a magnet. 

It is easy to show that three waves propagate in this case-electric, magnetic

and a wave carrying potential energy of the precessional motion of the

magnetic moments about the vector 0H . The systems in which these types of

waves are used can also be described as electromagnetopotential devices. 
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Conclusions

Thus, it has been found that along with the fundamental parameters εε0 and

μμ0 characterizing the electric and magnetic energy accumulated and

transferred in the medium, there are two more basic material parameters kL

and kC . They characterize kinetic and potential energy that can be

accumulated and transferred in material media. kL was sometimes used to

describe certain physical phenomena, for example, in superconductors, kC has

never been known to exist. These four fundamental parameters 0εε , 0μμ , kL

and kC clarify the physical picture of the wave and resonance processes in

material media in applied electromagnetic fields. Previously, only

electromagnetic waves were thought to propagate and transfer energy in

material media. It is clear now that the concept was not complete. In fact, 

magnetoelectrokinetic, or electromagnetopotential waves travel in material

media. The resonances in these media also have specific features. Unlike

closed planes with electromagnetic resonance and energy exchange between

electric and magnetic fields, material media have two types of resonance –

electrokinetic and magnetopotential. Under the electrokinetic resonsnce the

energy of the electric field changes to kinetic energy. In the case of

magnetopotential resonance the potential energy accumulated during the

precessional motion can escape outside at the precession frequency. 

The notions of permittivity and permeability dispersion thus become

physically groundless though ( )rϕ ε∗(ω) and ( )rϕ μ∗(ω) are handy for a

mathematical description of the processes in material media. We should

however remember their true meaning especially where educational processes

are involved. 
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      It is surprising that Eq. (3.29) actually accounts for the whole of

electrodynamics beause all current electrodynamics problems can be solved

using this equation. What is then a magnetic field? This is merely a

convenient mathematical procedure which is not necessarily gives a correct

result (e.g., in the case of parallel-moving charges). Now we can state that

electrocurrent, rather than electromagnetic, waves travel in space. Their

electric field and displacement current vectors are in the same plane and

displaced by
2
π

. 

In terms of Eq. (3.29), electrodynamics and optics can be reconstructed

completely to become simpler, more intelligible and obvious. 

The main ideas of this approach were described in the author’s publications

However, the results reported have never been used, most likely because they

remain unknown. The objective of this study is therefore to attract more

attention to them.  

      It is shown that in a nonmagnetized plasma, beside the longitudinal

Langmuir resonance, there may also exist the transversal resonance. Both

these resonance kinds are degenerated. Employment of the transversal

resonance makes it possible to design resonators and filters, as well as

powerful single-frequency lasers operating on the basis of collective

oscillations of plasma. 

     Any theory is dead unless important practical results are obtained of its

basis. The use of the previously unknown transverse plasma resonance is one

of the most important practical results following from this study. 
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